Advertisement

Science China Life Sciences

, Volume 59, Issue 4, pp 379–385 | Cite as

An analytical biomarker for treatment of patients with recurrent B-ALL after remission induced by infusion of anti-CD19 chimeric antigen receptor T (CAR-T) cells

  • Yajing Zhang
  • Wenying Zhang
  • Hanren Dai
  • Yao Wang
  • Fengxia Shi
  • Chunmeng Wang
  • Yelei Guo
  • Yang Liu
  • Meixia Chen
  • Kaichao Feng
  • Yan Zhang
  • Chuanjie Liu
  • Qingming Yang
  • Suxia LiEmail author
  • Weidong HanEmail author
Open Access
Research Paper SPECIAL TOPIC: Fighting cancer with armed T cells

Abstract

Anti-CD19 chimeric antigen receptor-modified T (CAR-T-19) cells have emerged as a powerful targeted immunotherapy for B-cell lineage acute lymphoblastic leukemia with a remarkable clinical response in recent trials. Nonetheless, few data are available on the subsequent clinical monitoring and treatment of the patients, especially those with disease recurrence after CAR-T-19 cell infusion. Here, we analyzed three patients who survived after our phase I clinical trial and who were studied by means of biomarkers reflecting persistence of CAR-T-19 cells in vivo and predictive factors directing further treatment. One patient achieved 9-week sustained complete remission and subsequently received an allogeneic hematopoietic stem cell transplant. Another patient who showed relapse after 20 weeks without detectable leukemia in the cerebrospinal fluid after CAR-T-19 cell treatment was able to achieve a morphological remission under the influence of stand-alone low-dose chemotherapeutic agents. The third patient gradually developed extensive extramedullary involvement in tissues with scarce immune- cell infiltration during a long period of hematopoietic remission after CAR-T-19 cell therapy. Long-term and discontinuous increases in serum cytokines (mainly interleukin 6 and C-reactive protein) were identified in two patients (Nos. 1 and 6) even though only a low copy number of CAR molecules could be detected in their peripheral blood. This finding was suggestive of persistent functional activity of CAR-T-19 cells. Combined analyses of laboratory biomarkers with their clinical manifestations before and after salvage treatment showed that the persistent immunosurveillance mediated by CAR-T-19 cells would inevitably potentiate the leukemia-killing effectiveness of subsequent chemotherapy in patients who showed relapse after CAR-T-19-induced remission.

Keywords

chimeric antigen receptor T cells B-cell acute lymphoblastic leukemia biomarker immunosurveillance microenvironment 

References

  1. Arkader, R., Troster, E.J., Lopes, M.R., Jú nior, R.R., Carcillo, J.A., Leone, C., and Okay, T.S. (2006). Procalcitonin does discriminate between sepsis and systemic inflammatory response syndrome. Arch Dis Child 91, 117–120.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bakker, E., Qattan, M., Mutti, L., Demonacos, C., and Krstic-Demonacos, M. (2016). The role of microenvironment and immunity in drug response in leukemia. Biochim Biophys Acta 1863, 414–426.CrossRefPubMedGoogle Scholar
  3. Brentjens, R.J., Davila, M.L., Riviere, I., Park, J., Wang, X., Cowell, L.G., Bartido, S., Stefanski, J., Taylor, C., Olszewska, M., Borquez-Ojeda, O., Qu, J., Wasielewska, T., He, Q., Bernal, Y., Rijo, I.V., Hedvat, C., Kobos, R., Curran, K., Steinherz, P., Jurcic, J., Rosenblat, T., Maslak, P., Frattini, M., and Sadelain, M. (2013). CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5, 177ra38.Google Scholar
  4. Butterfield, L.H., Palucka, A.K., Britten, C.M., Dhodapkar, M.V., Hå kansson, L., Janetzki, S., Kawakami, Y., Kleen, T.O., Lee, P.P., Maccalli, C., Maecker, H.T., Maino, V.C., Maio, M., Malyguine, A., Masucci, G., Pawelec, G., Potter, D.M., Rivoltini, L., Salazar, L.G., Schendel, D.J., Slingluff, C.L, Song, W., Stroncek, D.F., Tahara, H., Thurin, M., Trinchieri, G., van Der Burg, S.H., Whiteside, T.L., Wigginton, J.M., Marincola, F., Khleif, S., Fox, B.A., and Disis, M.L. (2011). Recommendations from the iSBTc-SITC/FDA/NCI workshop on immunotherapy biomarkers. Clin Cancer Res 17, 3064–3076.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Burger, J.A., and Gribben, J.G. (2014). The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies. Semin Cancer Biol 24, 71–81.CrossRefPubMedGoogle Scholar
  6. Cairo, M.S., and Bishop, M. (2004). Tumour lysis syndrome: new therapeutic strategies and classification. Br J Haematol 127, 3–11.CrossRefPubMedGoogle Scholar
  7. Christopoulos, P., Pfeifer, D., Bartholomé, K., Follo, M., Timmer, J., Fisch, P., and Veelken, H. (2011). Definition and characterization of the systemic T-cell dysregulation in untreated indolent B-cell lymphoma and very early CLL. Blood 117, 3836–3846.CrossRefPubMedGoogle Scholar
  8. Dai, H., Zhang, W., Li, X., Han, Q., Guo, Y., Zhang, Y., Wang, Y., Wang, C., Shi, F., Zhang, Y., Chen, M., Feng, K., Wang, Q., Zhu, H., Fu, X., Li, S., and Han, W. (2015). Tolerance and efficacy of autologous or donor-derived T cells expressing CD19 chimeric antigen receptors in adult B-ALL with extramedullary leukemia. OncoImmunology 4, e1027469.CrossRefGoogle Scholar
  9. Davila, M.L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., Chung, S.S., Stefanski, J., Borquez-Ojeda, O., Olszewska, M., Qu, J., Wasielewska, T., He, Q., Fink, M., Shinglot, H., Youssif, M., Satter, M., Wang, Y., Hosey, J., Quintanilla, H., Halton, E., Bernal, Y., Bouhassira, D.C., Arcila, M.E., Gonen, M., Roboz, G.J., Maslak, P., Douer, D., Frattini, M.G., Giralt, S., Sadelain, M., and Brentjens, R. (2014). Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6, 224ra25.Google Scholar
  10. Fox, B.A,, Schendel, D.J., Butterfield, L.H., Aamdal, S., Allison, J.P., Ascierto, P.A., Atkins, M.B., Bartunkova, J., Bergmann, L., Berinstein, N., Bonorino, C.C., Borden, E., Bramson, J.L., Britten, C.M., Cao, X., Carson, W.E., Chang, A.E., Characiejus, D., Choudhury, A.R., Coukos, G., de Gruijl, T., Dillman, R.O., Dolstra, H., Dranoff, G., Durrant, L.G., Finke, J.H., Galon, J., Gollob, J.A., Gouttefangeas, C., Grizzi, F., Guida, M., Håkansson, L., Hege, K., Herberman, R.B., Hodi, F.S., Hoos, A., Huber, C., Hwu, P., Imai, K., Jaffee, E.M., Janetzki, S., June, C.H., Kalinski, P., Kaufman, H.L., Kawakami, K., Kawakami, Y., Keilholtz, U., Khleif, S.N., Kiessling, R., Kotlan, B., Kroemer, G., Lapointe, R., Levitsky, H.I., Lotze, M.T., Maccalli, C., Maio, M., Marschner, J.P., Mastrangelo, M.J., Masucci, G., Melero, I., Melief, C., Murphy, W.J., Nelson, B., Nicolini, A., Nishimura, M.I., Odunsi, K., Ohashi, P.S., O’Donnell-Tormey, J., Old, L.J., Ottensmeier, C., Papamichail, M., Parmiani, G., Pawelec, G., Proietti, E., Qin, S., Rees, R., Ribas, A., Ridolfi, R., Ritter, G., Rivoltini, L., Romero, P.J., Salem, M.L., Scheper, R.J., Seliger, B., Sharma, P., Shiku, H., Singh-Jasuja, H., Song, W., Straten, P.T., Tahara, H., Tian, Z., van Der Burg, S.H., von Hoegen, P., Wang, E., Welters, M.J., Winter, H., Withington, T., Wolchok, J.D., Xiao, W., Zitvogel, L., Zwierzina, H., Marincola, F.M., Gajewski, T.F., Wigginton, J.M., and Disis, M.L. (2011). Defining the critical hurdles in cancer immunotherapy. J Transl Med 9, 214.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Garcia-Manero, G., and Thomas, D.A. (2001). Salvage therapy for refractory or relapsed acute lymphocytic leukemia. Hematol Oncol Clin North Am 15, 163–205.CrossRefPubMedGoogle Scholar
  12. Ghorashian, S., Pule, M., and Amrolia, P. (2015). CD19 chimeric antigen receptor T cell therapy for haematological malignancies. Br J Haematol 169, 463–478.CrossRefPubMedGoogle Scholar
  13. Grupp, S.A., Kalos, M., Barrett, D., Aplenc, R., Porter, D.L., Rheingold, S.R., Teachey, D.T., Chew, A., Hauck, B., Wright, J.F., Milone, M.C., Levine, B.L., and June, C.H. (2013). Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368, 1509–1518.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kalos, M. (2011) Biomarkers in T cell therapy clinical trials. J Transl Med 9, 138.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kochenderfer, J.N., Dudley, M.E., Feldman, S.A., Wilson, W.H., Spaner, D.E., Maric, I., Stetler-Stevenson, M., Phan, G.Q., Hughes, M.S., Sherry, R.M., Yang, J.C., Kammula, U.S., Devillier, L., Carpenter, R., Nathan, D.A., Morgan, R.A., Laurencot, C., and Rosenberg, S.A. (2012). B-cell depletion and remissions of malignancy along with cytokine- associated toxicity in a clinical trial of anti-CD19 chimeric- antigen-receptor-transduced T cells. Blood 119, 2709–2720.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lacey, S.F., and Kalos, M. (2013). Biomarkers in T-cell therapy clinical trials. Cytotherapy 15, 632–640.CrossRefPubMedGoogle Scholar
  17. Lee, D.W., Gardner, R., Porter, D.L., Louis, C.U., Ahmed, N., Jensen, M., Grupp, S.A., and Mackall, C.L. (2014). Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lorentzen, C.L, and Straten, P.T. (2015). CD19-chimeric antigen receptor T cells for treatment of chronic lymphocytic leukemia and acute lymphoblastic leukemia. Scand J Immunol 82, 307–319.CrossRefPubMedGoogle Scholar
  19. Marr, L.A., Gilham, D.E., Campbell, J.D., and Fraser, A.R. Immunology in the clinic review series; focus on cancer: double trouble for tumours: bi-functional and redirected T cells as effective cancer immunotherapies. (2012). Clin Exp Immunol 167, 216–225.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Maude, S.L., Barrett, D., Teachey, D.T., and Grupp, S.A. (2014). Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 20, 119–122.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Maude, S.L., Frey, N., Shaw, P.A., Aplenc, R., Barrett, D.M., Bunin, N.J., Chew, A., Gonzalez, V.E., Zheng, Z., Lacey, S.F., Mahnke, Y.D., Melenhorst, J.J., Rheingold, S.R., Shen, A., Teachey, D.T., Levine, B.L., June, C.H., Porter, D.L., and Grupp, S.A. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371, 1507–1517.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Pepys, M.B., and Hirschfield, G.M. (2003). C-reactive protein: a critical update. J Clin Invest 111, 1805–1812.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Rasool, M., Malik, A., Qureshi, M.S., Ahmad, R., Manan, A., Asif, M., Naseer, M.I., and Pushparaj, P.N. (2014). Development of tumor lysis syndrome (TLS): a potential risk factor in cancer patients receiving anticancer therapy. Bioinformation 10, 703–707.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Saha, B., Jyothi, P.S., Chandrasekar, B., and Nandi, D. (2010). Gene modulation and immunoregulatory roles of interferon gamma. Cytokine 50, 1–14.CrossRefPubMedGoogle Scholar
  25. Schultz, D.R., and Arnold, P.I. (1990). Properties of four acute phase proteins: C-reactive protein, serum amyloid A protein, alpha 1-acid glycoprotein, and fibrinogen. Semin Arthritis Rheum 20, 129–147.CrossRefPubMedGoogle Scholar
  26. Schreiber, R.D., Old, L.J., and Smyth, M.J. (2011). Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570.CrossRefPubMedGoogle Scholar
  27. Howard, S.C., Jones, D.P., and Pui, C.-H. (2011). The tumor lysis syndrome. N Engl J Med 364, 1844–1854.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Wang, Y., Zhang, W.Y., Han, Q.W., Liu, Y., Dai, H.R., Guo, Y.L., Bo, J., Fan, H., Zhang, Y., Zhang, Y.J., Chen, M.X., Feng, K.C., Wang, Q.S., Fu, X.B., and Han, W.D. (2014). Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells. Clin Immunol 155, 160–175.CrossRefPubMedGoogle Scholar
  29. Will, A., and Tholouli, E. (2011). The clinical management of tumour lysis syndrome in haematological malignancies. Br J Haematol 154, 3–13.CrossRefPubMedGoogle Scholar
  30. Yang, Z.Z., and Ansell, S.M. (2012). The tumor microenvironment in follicular lymphoma. Clin Adv Hematol Oncol 10, 810–818.PubMedGoogle Scholar
  31. Zhu, Y., Tan, Y., Ou, R., Zhong, Q., Zheng, L., Du, Y., Zhang, Q., and Huang, J. (2015). Anti-CD19 chimeric antigen receptor-modified T cells for B-cell malignancies: a systematic review of efficacy and safety in clinical trials. Eur J Haematol doi: 10.1111/ejh.12602.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Yajing Zhang
    • 1
  • Wenying Zhang
    • 1
  • Hanren Dai
    • 2
  • Yao Wang
    • 2
  • Fengxia Shi
    • 1
  • Chunmeng Wang
    • 1
  • Yelei Guo
    • 2
  • Yang Liu
    • 3
  • Meixia Chen
    • 1
  • Kaichao Feng
    • 1
  • Yan Zhang
    • 1
  • Chuanjie Liu
    • 2
  • Qingming Yang
    • 1
  • Suxia Li
    • 3
    Email author
  • Weidong Han
    • 1
    • 2
    • 4
    Email author
  1. 1.Bio-therapeutic DepartmentChinese PLA General HospitalBeijingChina
  2. 2.Molecular & Immunological Department, Institute of Basic Medicine, School of Life SciencesChinese PLA General HospitalBeijingChina
  3. 3.Department of Geriatric HematologyChinese PLA General HospitalBeijingChina
  4. 4.State key laboratory of kidney diseaseChinese PLA General HospitalBeijingChina

Personalised recommendations