Advertisement

Science China Life Sciences

, Volume 59, Issue 4, pp 360–369 | Cite as

Treatment of solid tumors with chimeric antigen receptor-engineered T cells: current status and future prospects

  • Shengmeng Di
  • Zonghai Li
Open Access
Review SPECIAL TOPIC: Fighting cancer with armed T cells

Abstract

Chimeric antigen receptors (CARs) are artificial recombinant receptors that generally combine the antigen-recognition domain of a monoclonal antibody with T cell activation domains. Recent years have seen great success in clinical trials employing CD19-specific CAR-T cell therapy for B cell leukemia. Nevertheless, solid tumors remain a major challenge for CAR-T cell therapy. This review summarizes the preclinical and clinical studies on the treatment of solid tumors with CAR-T cells. The major hurdles for the success of CAR-T and the novel strategies to address these hurdles have also been described and discussed.

Keywords

solid tumor adoptive cell therapy T cell chimeric antigen receptor 

References

  1. Abate-Daga, D., Lagisetty, K.H., Tran, E., Zheng, Z., Gattinoni, L., Yu, Z., Burns, W.R., Miermont, A.M., Teper, Y., Rudloff, U., Restifo, N.P., Feldman, S.A., Rosenberg, S.A., and Morgan, R.A. (2014). A novel chimeric antigen receptor against PSCA mediates tumor destruction in a humanized mouse model of pancreatic cancer. Hum Gene Ther 25, 1003–1012.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adusumilli, P.S., Cherkassky, L., Villena-Vargas, J., Colovos, C., Servais, E., Plotkin, J., Jones, D.R., and Sadelain, M. (2014). Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med 6, 261ra151.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahmed, N., Brawley, V.S., Hegde, M., Robertson, C., Ghazi, A., Gerken, C., Liu, E., Dakhova, O., Ashoori, A., Corder, A., Gray, T., Wu, M.F., Liu, H., Hicks, J., Rainusso, N., Dotti, G., Mei, Z., Grilley, B., Gee, A., Rooney, C.M., Brenner, M.K., Heslop, H.E., Wels, W.S., Wang, L.L., Anderson, P., and Gottschalk, S. (2015). Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 33: 1688–1696.CrossRefPubMedGoogle Scholar
  4. Ahmed, N., Ratnayake, M., Savoldo, B., Perlaky, L., Dotti, G., Wels, W.S., Bhattacharjee, M.B., Gilbertson, R.J., Shine, H.D., Weiss, H.L., Rooney, C.M., Heslop, H.E., and Gottschalk, S. (2007). Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Cancer Res 67, 5957–5964.CrossRefPubMedGoogle Scholar
  5. Annenkov, A.E., Daly, G.M., and Chernajovsky, Y. (2002). Highly efficient gene transfer into antigen-specific primary mouse lymphocytes with replication-deficient retrovirus expressing the 10A1 envelope protein. J Gene Med 4, 133–140.CrossRefPubMedGoogle Scholar
  6. Beatty, G., O’Hara, M., Nelson, A., McGarvey, M., Torigian, D., Lacey, S., Melenhorst, J., Levine, B., Plesa, G., and June, C. (2015). Safety and antitumor activity of chimeric antigen receptor modified T cells in patients with chemotherapy refractory metastatic pancreatic cancer. J Clin Oncol 33, 3007.Google Scholar
  7. Beatty, G.L., Haas, A.R., Maus, M.V., Torigian, D.A., Soulen, M.C., Plesa, G., Chew, A., Zhao, Y., Levine, B.L., Albelda, S.M., Kalos, M., and June, C.H. (2014). Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2, 112–120.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burnette, B.C., Liang, H., Lee, Y., Chlewicki, L., Khodarev, N.N., Weichselbaum, R.R., Fu, Y.-X., and Auh, S.L. (2011). The efficacy of radiotherapy relies upon induction of type I interferon–dependent innate and adaptive immunity. Cancer Res 71, 2488–2496.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Campana, D., Schwarz, H., and Imai, C. (2014). 4-1BB chimeric antigen receptors. Cancer J 20, 134–140.CrossRefPubMedGoogle Scholar
  10. Carosella, E.D., Ploussard, G., LeMaoult, J., and Desgrandchamps, F. (2015). A systematic review of immunotherapy in urologic cancer: evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G. Euro Urol 68, 267–279.CrossRefGoogle Scholar
  11. Carpenito, C., Milone, M.C., Hassan, R., Simonet, J.C., Lakhal, M., Suhoski, M.M., Varela-Rohena, A., Haines, K.M., Heitjan, D.F., Albelda, S.M., Carroll, R.G., Riley, J.L., Pastan, I., and June, C.H. (2009). Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 106, 3360–3365.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Caruana, I., Savoldo, B., Hoyos, V., Weber, G., Liu, H., Kim, E.S., Ittmann, M.M., Marchetti, D., and Dotti, G. (2015). Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 21, 524–529.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Caruso, H.G., Hurton, L.V., Najjar, A., Rushworth, D., Ang, S., Olivares, S., Mi, T., Switzer, K., Singh, H., Huls, H., Lee, D.A., Heimberger, A.B., Champlin, R.E., and Cooper, L.J. (2015). Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res 75, 3505–3518.CrossRefPubMedGoogle Scholar
  14. Chmielewski, M., Hombach, A.A., and Abken, H. (2011). CD28 cosignalling does not affect the activation threshold in a chimeric antigen receptor-redirected T-cell attack. Gene Ther 18, 62–72.CrossRefPubMedGoogle Scholar
  15. Chmielewski, M., Rappl, G., Hombach, A.A., and Abken, H. (2012). T cells redirected by a CD3zeta chimeric antigen receptor can establish self-antigen-specific tumour protection in the long term. Gene Ther 20, 177–186.CrossRefPubMedGoogle Scholar
  16. Choi, B.D., Suryadevara, C.M., Gedeon, P.C., Herndon, J.E., Sanchez-Perez, L., Bigner, D.D., and Sampson, J.H. (2014). Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma. J Clin Neurosci 21, 189–190.CrossRefPubMedGoogle Scholar
  17. Chow, K.K., Naik, S., Kakarla, S., Brawley, V.S., Shaffer, D.R., Yi, Z., Rainusso, N., Wu, M.F., Liu, H., Kew, Y., Grossman, R.G., Powell, S., Lee, D., Ahmed, N., and Gottschalk, S. (2013). T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther 21, 629–637.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Craddock, J.A., Lu, A., Bear, A., Pule, M., Brenner, M.K., Rooney, C.M., and Foster, A.E. (2010). Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother 33, 780–788.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Curran, K.J., Seinstra, B.A., Nikhamin, Y., Yeh, R., Usachenko, Y., van Leeuwen, D.G., Purdon, T., Pegram, H.J., and Brentjens, R.J. (2015). Enhancing anti-tumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol Ther 23, 769–778.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Davila, M.L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., Chung, S.S., Stefanski, J., Borquez-Ojeda, O., Olszewska, M., Qu, J., Wasielewska, T., He, Q., Fink, M., Shinglot, H., Youssif, M., Satter, M., Wang, Y., Hosey, J., Quintanilla, H., Halton, E., Bernal, Y., Bouhassira, D.C., Arcila, M.E., Gonen, M., Roboz, G.J., Maslak, P., Douer, D., Frattini, M.G., Giralt, S., Sadelain, M., and Brentjens, R. (2014). Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6, 224ra225.Google Scholar
  21. Di Stasi, A., De Angelis, B., Rooney, C.M., Zhang, L., Mahendravada, A., Foster, A.E., Heslop, H.E., Brenner, M.K., Dotti, G., and Savoldo, B. (2009). T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113, 6392–6402.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Di Stasi, A., Tey, S.K., Dotti, G., Fujita, Y., Kennedy-Nasser, A., Martinez, C., Straathof, K., Liu, E., Durett, A.G., Grilley, B., Liu, H., Cruz, C.R., Savoldo, B., Gee, A.P., Schindler, J., Krance, R.A., Heslop, H.E., Spencer, D.M., Rooney, C.M., and Brenner, M.K. (2011). Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365, 1673–1683.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Diamond, M.S., Kinder, M., Matsushita, H., Mashayekhi, M., Dunn, G.P., Archambault, J.M., Lee, H., Arthur, C.D., White, J.M., and Kalinke, U. (2011). Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208, 1989–2003.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dubinski, D., Wölfer, J., Hasselblatt, M., Schneider-Hohendorf, T., Bogdahn, U., Stummer, W., Wiendl, H., and Grauer, O.M. (2015). CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol pii: nov280.Google Scholar
  25. Emtage, P.C., Lo, A.S., Gomes, E.M., Liu, D.L., Gonzalo-Daganzo, R.M., and Junghans, R.P. (2008). Second-generation anti-carcinoembryonic antigen designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a preclinical evaluation. Clin Cancer Res 14, 8112–8122.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fedorov, V.D., Themeli, M., and Sadelain, M. (2013). PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 5, 215ra172.Google Scholar
  27. Fu, X., Rivera, A., Tao, L., and Zhang, X. (2013). Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels, shrink established solid tumors, and increase nanoparticle delivery. Int J Cancer 133, 2483–2492.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gao, H., Li, K., Tu, H., Pan, X., Jiang, H., Shi, B., Kong, J., Wang, H., Yang, S., Gu, J., and Li, Z. (2014). Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 20, 6418–6428.CrossRefPubMedGoogle Scholar
  29. Gargett, T., and Brown, M.P. (2014). The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol 5, 235.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Geldres, C., Savoldo, B., Hoyos, V., Caruana, I., Zhang, M., Yvon, E., Del Vecchio, M., Creighton, C.J., Ittmann, M.M., Ferrone, S., and Dotti, G. (2013). T lymphocytes redirected against the chondroitin sulfate proteoglycan-4 control the growth of multiple solid tumors both in vitro and in vivo. Clin Cancer Res 20, 962–967.CrossRefPubMedPubMedCentralGoogle Scholar
  31. González-Navajas, J.M., Lee, J., David, M., and Raz, E. (2012). Immunomodulatory functions of type I interferons. Nat Rev Immunol 12, 125–135.PubMedPubMedCentralGoogle Scholar
  32. Grada, Z., Hegde, M., Byrd, T., Shaffer, D.R., Ghazi, A., Brawley, V.S., Corder, A., Schonfeld, K., Koch, J., Dotti, G., Heslop, H.E., Gottschalk, S., Wels, W.S., Baker, M.L., and Ahmed, N. (2013). TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 21, 1611–1620.Google Scholar
  33. Hong, H., Stastny, M., Brown, C., Chang, W.C., Ostberg, J.R., Forman, S.J., and Jensen, M.C. (2014). Diverse solid tumors expressing a restricted epitope of L1-CAM can be targeted by chimeric antigen receptor redirected T lymphocytes. J Immunother 37, 93–104.CrossRefPubMedGoogle Scholar
  34. Jacoby, E., Yang, Y., Qin, H., Chien, C.D., Kochenderfer, J.N., and Fry, T.J. (2015). Murine allogeneic CD19 CAR T-cells harbor potent anti-leukemic activity but have the potential to mediate lethal GVHD. Blood pii: blood-2015-2008-664250.Google Scholar
  35. Jensen, M.C., Popplewell, L., Cooper, L.J., DiGiusto, D., Kalos, M., Ostberg, J.R., and Forman, S.J. (2010). Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant 16, 1245–1256.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kakarla, S., Chow, K.K., Mata, M., Shaffer, D.R., Song, X.T., Wu, M.F., Liu, H., Wang, L.L., Rowley, D.R., Pfizenmaier, K., and Gottschalk, S. (2013). Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther 21, 1611–1620.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kalos, M., Levine, B.L., Porter, D.L., Katz, S., Grupp, S.A., Bagg, A., and June, C.H. (2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3, 95ra73.Google Scholar
  38. Kershaw, M.H., Wang, G., Westwood, J.A., Pachynski, R.K., Tiffany, H.L., Marincola, F.M., Wang, E., Young, H.A., Murphy, P.M., and Hwu, P. (2002). Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther 13, 1971–1980.CrossRefPubMedGoogle Scholar
  39. Kershaw, M.H., Westwood, J.A., Parker, L.L., Wang, G., Eshhar, Z., Mavroukakis, S.A., White, D.E., Wunderlich, J.R., Canevari, S., Rogers-Freezer, L., Chen, C.C., Yang, J.C., Rosenberg, S.A., and Hwu, P. (2006). A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12, 6106–6115.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Khaleghi, S., Rahbarizadeh, F., Ahmadvand, D., Rasaee, M.J., and Pognonec, P. (2012). A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells. Int J Hematol 95, 434–444.CrossRefPubMedGoogle Scholar
  41. Kloss, C.C., Condomines, M., Cartellieri, M., Bachmann, M., and Sadelain, M. (2013). Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31, 71–75.CrossRefPubMedGoogle Scholar
  42. Kobayashi, E., Kishi, H., Ozawa, T., Hamana, H., Nakagawa, H., Jin, A., Lin, Z., and Muraguchi, A. (2014). A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells. Biochem Biophys Res Commun 453, 798–803.CrossRefPubMedGoogle Scholar
  43. Krug, C., Birkholz, K., Paulus, A., Schwenkert, M., Schmidt, P., Hoffmann, N., Hombach, A., Fey, G., Abken, H., Schuler, G., Schuler-Thurner, B., Dorrie, J., and Schaft, N. (2015). Stability and activity of MCSP-specific chimeric antigen receptors (CARs) depend on the scFv antigen-binding domain and the protein backbone. Cancer Immunol Immunother 64, 1623–1635.CrossRefPubMedGoogle Scholar
  44. Lamers, C.H., Sleijfer, S., van Steenbergen, S., van Elzakker, P., van Krimpen, B., Groot, C., Vulto, A., den Bakker, M., Oosterwijk, E., Debets, R., and Gratama, J.W. (2013). Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21, 904–912.CrossRefPubMedGoogle Scholar
  45. Lamers, C.H., Sleijfer, S., Vulto, A.G., Kruit, W.H., Kliffen, M., Debets, R., Gratama, J.W., Stoter, G., and Oosterwijk, E. (2006). Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24, e20–e22.CrossRefGoogle Scholar
  46. Lamers, C.H., Willemsen, R., van Elzakker, P., van Steenbergen-Langeveld, S., Broertjes, M., Oosterwijk-Wakka, J., Oosterwijk, E., Sleijfer, S., Debets, R., and Gratama, J.W. (2011). Immune responses to transgene and retroviral vector in patients treated with ex vivoengineered T cells. Blood 117, 72–82.CrossRefPubMedGoogle Scholar
  47. Lanitis, E., Dangaj, D., Hagemann, I.S., Song, D.G., Best, A., Sandaltzopoulos, R., Coukos, G., and Powell, D.J. (2012a). Primary human ovarian epithelial cancer cells broadly express HER2 at immunologically-detectable levels. PLoS One 7, e49829.CrossRefGoogle Scholar
  48. Lanitis, E., Poussin, M., Hagemann, I.S., Coukos, G., Sandaltzopoulos, R., Scholler, N., and Powell, D.J.. (2012b). Redirected antitumor activity of primary human lymphocytes transduced with a fully human anti-mesothelin chimeric receptor. Mol Ther 20, 633–643.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lasek, W., Zagozdzon, R., and Jakobisiak, M. (2014). Interleukin 12: still a promising candidate for tumor immunotherapy–Cancer Immunol Immunother 63, 419–435.Google Scholar
  50. Lee, D.W., Kochenderfer, J.N., Stetler-Stevenson, M., Cui, Y.K., Delbrook, C., Feldman, S.A., Fry, T.J., Orentas, R., Sabatino, M., Shah, N.N., Steinberg, S.M., Stroncek, D., Tschernia, N., Yuan, C., Zhang, H., Zhang, L., Rosenberg, S.A., Wayne, A.S., and Mackall, C.L. (2014). T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528.CrossRefPubMedGoogle Scholar
  51. Liao, C., Xiao, W., Zhu, N., Liu, Z., Yang, J., Wang, Y., and Hong, M. (2015). Radiotherapy suppressed tumor-specific recruitment of regulator T cells via up-regulating microR-545 in Lewis lung carcinoma cells. Int J Clin Exp Pathol 8, 2535–2544.PubMedPubMedCentralGoogle Scholar
  52. Liu, F., Park, P.J., Lai, W., Maher, E., Chakravarti, A., Durso, L., Jiang, X., Yu, Y., Brosius, A., Thomas, M., Chin, L., Brennan, C., DePinho, R.A., Kohane, I., Carroll, R.S., Black, P.M., and Johnson, M.D. (2006). A genome-wide screen reveals functional gene clusters in the cancer genome and identifies EphA2 as a mitogen in glioblastoma. Cancer Res 66, 10815–10823.CrossRefPubMedGoogle Scholar
  53. Liu, X., Jiang, S., Fang, C., Yang, S., Olalere, D., Pequignot, E.C., Cogdill, A.P., Li, N., Ramones, M., Granda, B., Zhou, L., Loew, A., Young, R.M., June, C.H., and Zhao, Y. (2015). Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 75, 3596–3607.CrossRefPubMedGoogle Scholar
  54. Mata, M., Vera, J.F., Gerken, C., Rooney, C.M., Miller, T., Pfent, C., Wang, L.L., Wilson-Robles, H.M., and Gottschalk, S. (2014). Toward immunotherapy with redirected T cells in a large animal model: ex vivo activation, expansion, and genetic modification of canine T cells. J Immunother 37, 407–415.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Miao, H., Choi, B.D., Suryadevara, C.M., Sanchez-Perez, L., Yang, S., De Leon, G., Sayour, E.J., McLendon, R., Herndon, J.E., Healy, P., Archer, G.E., Bigner, D.D., Johnson, L.A., and Sampson, J.H. (2014). EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS One 9, e94281.CrossRefGoogle Scholar
  56. Miao, H., Li, D.Q., Mukherjee, A., Guo, H., Petty, A., Cutter, J., Basilion, J.P., Sedor, J., Wu, J., Danielpour, D., Sloan, A.E., Cohen, M.L., and Wang, B. (2009). EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 16, 9–20.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Moon, E.K., Wang, L.C., Dolfi, D.V., Wilson, C.B., Ranganathan, R., Sun, J., Kapoor, V., Scholler, J., Puré, E., and Milone, M.C. (2014). Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin Cancer Res 20, 4262–4273.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Morgan, R.A., Yang, J., Kitano, M., Dudley, M.E., Laurencot, C.M., and Rosenberg, S.A. (2010). Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18, 843–851.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ahmed, N.M., Brawley, V.S., Diouf, O., Ghazi, A., Yi, J., Liu, H., Rooney, C.M., Gianpietro, D., Gee, A.P., Grossman, R., Kew, Y., Baskin, D.S., Ashoori, A., Zhang, J., Hicks, J., Powell, S., Wels, W., Brenner, M.K., Heslop, H.E., and Gottschalk, S.M. (2015). Autologous HER2 CMV bispecific CAR T cells are safe and demonstrate clinical benefit for glioblastoma in a Phase I trial. J Immunol Therapy Cancer 3 (suppl 2), O11.CrossRefGoogle Scholar
  60. Park, J.R., Digiusto, D.L., Slovak, M., Wright, C., Naranjo, A., Wagner, J., Meechoovet, H.B., Bautista, C., Chang, W., Ostberg, J.R., and Jensen, M.C. (2007). Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15, 825–833.PubMedGoogle Scholar
  61. Pule, M.A., Savoldo, B., Myers, G.D., Rossig, C., Russell, H.V., Dotti, G., Huls, M.H., Liu, E., Gee, A.P., Mei, Z., Yvon, E., Weiss, H.L., Liu, H., Rooney, C.M., Heslop, H.E., and Brenner, M.K. (2008). Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14, 1264–1270.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Russo, V., Bondanza, A., Ciceri, F., Bregni, M., Bordignon, C., Traversari, C., and Bonini, C. (2012). A dual role for genetically modified lymphocytes in cancer immunotherapy. Trends Mol Med 18, 193–200.CrossRefPubMedGoogle Scholar
  63. Schumacher, T.N., and Schreiber, R.D. (2015). Neoantigens in cancer immunotherapy. Science 348, 69–74.CrossRefPubMedGoogle Scholar
  64. Maude, S.L., Frey, N., Shaw, P.A., Aplenc, R., Barrett, D.M., Bunin, N.J., Chew, A., Gonzalez, V.E., Zheng, Z., Lacey, S.F., Mahnke, Y.D., Melenhorst, J.J., Rheingold, S.R., Shen, A., Teachey, D.T., Levine, B.L., June, C.H., Porter, D.L., and Grupp, S.A. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371, 1507–1517.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Krebs, S., Chow, K.K., Yi, Z., Rodriguez-Cruz T., Hegde M., Gerken C., Ahmed N., and Gottschalk, S. (2014). T cells redirected to interleukin-13Ra2 with interleukin-13 muteinechimeric antigen receptors have anti-glioma activity but also recognize interleukin-13Ra1. Cytotherapy 16, 1121–1131.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Song, D.G., Ye, Q., Carpenito, C., Poussin, M., Wang, L., Ji, C., Figini, M., June, C.H., Coukos, G., and Powell, D.J.. (2011). In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res 71, 4617–4627.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Spear, P., Barber, A., Rynda-Apple, A., and Sentman, C.L. (2013). NKG2D CAR T-cell therapy inhibits the growth of NKG2D ligand heterogeneous tumors. Immunol Cell Biol 91, 435–440.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Stancovski, I., Schindler, D.G., Waks, T., Yarden, Y., Sela, M., and Eshhar, Z. (1993). Targeting of T lymphocytes to Neu/HER2- expressing cells using chimeric single chain Fv receptors. J Immunol 151, 6577–6582.PubMedGoogle Scholar
  69. Stephan, M.T., Ponomarev, V., Brentjens, R.J., Chang, A.H., Dobrenkov, K.V., Heller, G., and Sadelain, M. (2007). T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat Med 13, 1440–1449.CrossRefPubMedGoogle Scholar
  70. Sun, M., Shi, H., Liu, C., Liu, J., Liu, X., and Sun, Y. (2014). Construction and evaluation of a novel humanized HER2-specific chimeric receptor. Breast Cancer Res 16, R61.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tang, X., Zhou, Y., Li, W., Tang, Q., Chen, R., Zhu, J., and Feng, Z. (2014). T cells expressing a LMP1-specific chimeric antigen receptor mediate antitumor effects against LMP1-positive nasopharyngeal carcinoma cells in vitro and in vivo. J Biomed Res 28, 468–475.PubMedPubMedCentralGoogle Scholar
  72. Anurathapan, U., Chan, R.C., Hindi, H.F., Mucharla, R., Bajgain, P., Hayes, B.C., Fisher, W.E., Heslop, H.E., Rooney, C.M., Brenner, M.K., Leen, A.M., and Vera, J.F. (2013). Kinetics of tumor destruction by chimeric antigen receptormodified T cells. Mol Ther 22, 623–633.CrossRefPubMedPubMedCentralGoogle Scholar
  73. VanSeggelen, H., Hammill, J.A., Dvorkin-Gheva, A., Tantalo, D.G., Kwiecien, J.M., Denisova, G.F., Rabinovich, B., Wan, Y., and Bramson, J.L. (2015). T cells engineered with chimeric antigen receptors targeting NKG2D ligands display lethal toxicity in mice. Mol Ther 23, 1600–1610.CrossRefPubMedGoogle Scholar
  74. Wang, W., Ma, Y., Li, J., Shi, H., Wang, L., Guo, F., Zhang, J., Li, D., Mo, B., Wen, F., Liu, T., Liu, Y., Wang, Y., and Wei, Y. (2013). Specificity redirection by CAR with human VEGFR-1 affinity endows T lymphocytes with tumor-killing ability and anti-angiogenic potency. Gene Ther 20, 970–978.CrossRefPubMedGoogle Scholar
  75. Watford, W.T., Moriguchi, M., Morinobu, A., and O’Shea, J.J. (2003). The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev 14, 361–368.CrossRefPubMedGoogle Scholar
  76. Wilkie, S., Picco, G., Foster, J., Davies, D.M., Julien, S., Cooper, L., Arif, S., Mather, S.J., Taylor-Papadimitriou, J., Burchell, J.M., and Maher, J. (2008). Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 180, 4901–4909.CrossRefPubMedGoogle Scholar
  77. Wu, C.Y., Roybal, K.T., Puchner, E.M., Onuffer, J., and Lim, W.A. (2015a). Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350, aab4077.CrossRefGoogle Scholar
  78. Wu, M., Zhang, T., Alcon, A., and Sentman, C.L. (2015b). DNAM-1-based chimeric antigen receptors enhance T cell effector function and exhibit in vivo efficacy against melanoma. Cancer Immunol Immunother 64, 409–418.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wu, M., Zhang, T., DeMars, L.R., and Sentman, C.L. (2015c). B7H6-specific chimeric antigen receptors lead to tumor elimination and host antitumor immunity. Gene Ther 22, 675–684.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yarden, Y., and Sliwkowski, M.X. (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2, 127–137.CrossRefPubMedGoogle Scholar
  81. Yvon, E., Del Vecchio, M., Savoldo, B., Hoyos, V., Dutour, A., Anichini, A., Dotti, G., and Brenner, M.K. (2009). Immunotherapy of metastatic melanoma using genetically engineered GD2-specific T cells. Clin Cancer Res 15, 5852–5860.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhang, T., Wu, M.R., and Sentman, C.L. (2012). An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. J Immunol 189, 2290–2299.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhao, Y., Moon, E., Carpenito, C., Paulos, C.M., Liu, X., Brennan, A.L., Chew, A., Carroll, R.G., Scholler, J., Levine, B.L., Albelda, S.M., and June, C.H. (2010). Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70, 9053–9061.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhou, X., Li, J., Wang, Z., Chen, Z., Qiu, J., Zhang, Y., Wang, W., Ma, Y., Huang, N., Cui, K., and Wei, Y. (2013). Cellular immunotherapy for carcinoma using genetically modified EGFR-specific T lymphocytes. Neoplasia 15, 544–553.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji HospitalShanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations