Science China Life Sciences

, Volume 60, Issue 4, pp 370–385 | Cite as

Genetic technologies for extremely thermophilic microorganisms of Sulfolobus, the only genetically tractable genus of crenarchaea

  • Nan Peng
  • Wenyuan Han
  • Yingjun Li
  • Yunxiang Liang
  • Qunxin SheEmail author


Archaea represents the third domain of life, with the information-processing machineries more closely resembling those of eukaryotes than the machineries of the bacterial counterparts but sharing metabolic pathways with organisms of Bacteria, the sister prokaryotic phylum. Archaeal organisms also possess unique features as revealed by genomics and genome comparisons and by biochemical characterization of prominent enzymes. Nevertheless, diverse genetic tools are required for in vivo experiments to verify these interesting discoveries. Considerable efforts have been devoted to the development of genetic tools for archaea ever since their discovery, and great progress has been made in the creation of archaeal genetic tools in the past decade. Versatile genetic toolboxes are now available for several archaeal models, among which Sulfolobus microorganisms are the only genus representing Crenarchaeota because all the remaining genera are from Euryarchaeota. Nevertheless, genetic tools developed for Sulfolobus are probably the most versatile among all archaeal models, and these include viral and plasmid shuttle vectors, conventional and novel genetic manipulation methods, CRISPR-based gene deletion and mutagenesis, and gene silencing, among which CRISPR tools have been reported only for Sulfolobus thus far. In this review, we summarize recent developments in all these useful genetic tools and discuss their possible application to research into archaeal biology by means of Sulfolobus models.


Sulfolobus genetic manipulation shuttle vector gene knockout selection and counter-selection CRISPR-based gene editing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Danish Council of Independent Research (DFF-0602-02196, DFF-4181-00274, DFF-1323-00330), and the Fundamental Research Funds for the Central Universities (2662015PX199).


  1. Albers, S.V., and Driessen, A.J.M. (2008). Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2, 145–149.PubMedCrossRefGoogle Scholar
  2. Albers, S.V., and Jarrell, K.F. (2015). The archaellum: how archaea swim. Front Microbiol 6, 23.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Albers, S.V., Jonuscheit, M., Dinkelaker, S., Urich, T., Kletzin, A., Tampé, R., Driessen, A.J.M., and Schleper, C. (2006). Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus. Appl Environ Microbiol 72, 102–111.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aravalli, R.N., and Garrett, R.A. (1997). Shuttle vectors for hyperthermophilic archaea. Extremophiles 1, 183–192.PubMedCrossRefGoogle Scholar
  5. Arnold, H.P., She, Q., Phan, H., Stedman, K., Prangishvili, D., Holz, I., Kristjansson, J.K., Garrett, R., and Zillig, W. (1999). The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol Microbiol 34, 217–226.PubMedCrossRefGoogle Scholar
  6. Aucelli, T., Contursi, P., Girfoglio, M., Rossi, M., and Cannio, R. (2006). A spreadable, non-integrative and high copy number shuttle vector for Sulfolobus solfataricus based on the genetic element pSSVx from Sulfolobus islandicus. Nucleic Acids Res 34, e114–e114.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bell, S.D., and Jackson, S.P. (1998). Transcription and translation in archaea: a mosaic of eukaryal and bacterial features. Trends Microbiol 6, 222–228.PubMedCrossRefGoogle Scholar
  8. Berkner, S., Grogan, D., Albers, S.V., and Lipps, G. (2007). Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res 35, e88–e88.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Berkner, S., Hinojosa, M.P., Prangishvili, D., and Lipps, G. (2014). Identification of the minimal replicon and the origin of replication of the crenarchaeal plasmid pRN1. Microbiologyopen 3, 688–701.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Berkner, S., and Lipps, G. (2008). Genetic tools for Sulfolobus spp.: vectors and first applications. Arch Microbiol 190, 217–230.PubMedCrossRefGoogle Scholar
  11. Berkner, S., Wlodkowski, A., Albers, S.V., and Lipps, G. (2010). Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius. Extremophiles 14, 249–259.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bitan-Banin, G., Ortenberg, R., and Mevarech, M. (2003). Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene. J Bacteriol 185, 772–778.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P. (2008). Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Micro 6, 245–252.CrossRefGoogle Scholar
  14. Brock, T.D., Brock, K.M., Belly, R.T., and Weiss, R.L. (1972). Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv Mikrobiol 84, 54–68.CrossRefGoogle Scholar
  15. Brouns, S.J.J., Walther, J., Snijders, A.P.L., van de Werken, H.J.G., Willemen, H.L.D.M., Worm, P., de Vos, M.G.J., Andersson, A., Lundgren, M., Mazon, H.F.M., van den Heuvel, R.H.H., Nilsson, P., Salmon, L., de Vos, W.M., Wright, P.C., Bernander, R., and van der Oost, J. (2006). Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment. J Biol Chem 281, 27378–27388.PubMedCrossRefGoogle Scholar
  16. Brügger, K., Redder, P., She, Q., Confalonieri, F., Zivanovic, Y., and Garrett, R.A. (2002). Mobile elements in archaeal genomes. FEMS Microbiol Lett 206, 131–141.PubMedCrossRefGoogle Scholar
  17. Cadillo-Quiroz, H., Didelot, X., Held, N.L., Herrera, A., Darling, A., Reno, M.L., Krause, D.J., and Whitaker, R.J. (2012). Patterns of gene flow define species of thermophilic archaea. PLoS Biol 10, e1001265.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cammarano, P., Teichner, A., Londei, P., Acca, M., Nicolaus, B., Sanz, J.L., and Amils, R. (1985). Insensitivity of archaebacterial ribosomes to protein synthesis inhibitors. Evolutionary implications. EMBO J 4, 811–816.PubMedPubMedCentralGoogle Scholar
  19. Cannio, R., Contursi, P., Rossi, M., and Bartolucci, S. (1998). An autonomously replicating transforming vector for Sulfolobus solfataricus. J Bacteriol 180, 3237–3240.PubMedPubMedCentralGoogle Scholar
  20. Chaban, B., Ng, S.Y.M., and Jarrell, K.F. (2006). Archaeal habitats—from the extreme to the ordinary. Can J Microbiol 52, 73–116.PubMedCrossRefGoogle Scholar
  21. Chen, L., Brügger, K., Skovgaard, M., Redder, P., She, Q., Torarinsson, E., Greve, B., Awayez, M., Zibat, A., Klenk, H.P., and Garrett, R.A. (2005). The genome of Sulfolobus acidocaldarius, a model organism of the crenarchaeota. J Bacteriol 187, 4992–4999.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Contursi, P., Cannio, R., Prato, S., She, Q., Rossi, M., and Bartolucci, S. (2007). Transcriptional analysis of the genetic element pSSVx: differential and temporal regulation of gene expression reveals correlation between transcription and replication. J Bacteriol 189, 6339–6350.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Contursi, P., Cannio, R., and She, Q. (2010). Transcription termination in the plasmid/virus hybrid pSSVx from Sulfolobus islandicus. Extremophiles 14, 453–463.PubMedCrossRefGoogle Scholar
  24. Contursi, P., D'Ambrosio, K., Pirone, L., Pedone, E., Aucelli, T., She, Q., De Simone, G., and Bartolucci, S. (2011). C68 from the Sulfolobus islandicus plasmid-virus pSSVx is a novel member of the AbrB-like transcription factor family. Biochem J 435, 157–166.PubMedCrossRefGoogle Scholar
  25. Contursi, P., Farina, B., Pirone, L., Fusco, S., Russo, L., Bartolucci, S., Fattorusso, R., and Pedone, E. (2014a). Structural and functional studies of Stf76 from the Sulfolobus islandicus plasmid-virus pSSVx: a novel peculiar member of the winged helix-turn-helix transcription factor family. Nucleic Acids Res 42, 5993–6011.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Contursi, P., Fusco, S., Cannio, R., and She, Q. (2014b). Molecular biology of fuselloviruses and their satellites. Extremophiles 18, 473–489.PubMedCrossRefGoogle Scholar
  27. D’Auria, S., Moracci, M., Febbraio, F., Tanfani, F., Nucci, R., and Rossi, M. (1998). Structure-function studies on β-glycosidase from Sulfolobus solfataricus. Molecular bases of thermostability. Biochimie 80, 949–957.PubMedCrossRefGoogle Scholar
  28. Dai, X., Wang, H., Zhang, Z., Li, K., Zhang, X., Mora-López, M., Jiang, C., Liu, C., Wang, L., Zhu, Y., Hernández-Ascencio, W., Dong, Z., and Huang, L. (2016). Genome sequencing of Sulfolobus sp. A20 from costa rica and comparative analyses of the putative pathways of carbon, nitrogen, and sulfur metabolism in various Sulfolobus strains. Front Microbiol 7, 1902.PubMedPubMedCentralGoogle Scholar
  29. Delong, E.F., and Pace, N.R. (2001). Environmental diversity of bacteria and archaea. Syst Biol 50, 470–478.PubMedCrossRefGoogle Scholar
  30. Deng, L., Garrett, R.A., Shah, S.A., Peng, X., and She, Q. (2013). A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol Microbiol 87, 1088–1099.PubMedCrossRefGoogle Scholar
  31. Deng, L., Kenchappa, C.S., Peng, X., She, Q., and Garrett, R.A. (2012). Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus. Nucleic Acids Res 40, 2470–2480.PubMedCrossRefGoogle Scholar
  32. Deng, L., Zhu, H., Chen, Z., Liang, Y.X., and She, Q. (2009). Unmarked gene deletion and host-vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extremophiles 13, 735–746.PubMedCrossRefGoogle Scholar
  33. Doré, A.S., Kilkenny, M.L., Jones, S.A., Oliver, A.W., Roe, S.M., Bell, S.D., and Pearl, L.H. (2006). Structure of an archaeal PCNA1-PCNA2-FEN1 complex: elucidating PCNA subunit and client enzyme specificity. Nucleic Acids Res 34, 4515–4526.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Elkins, J.G., Podar, M., Graham, D.E., Makarova, K.S., Wolf, Y., Randau, L., Hedlund, B.P., Brochier-Armanet, C., Kunin, V., Anderson, I., Lapidus, A., Goltsman, E., Barry, K., Koonin, E.V., Hugenholtz, P., Kyrpides, N., Wanner, G., Richardson, P., Keller, M., and Stetter, K.O. (2008). A korarchaeal genome reveals insights into the evolution of the archaea. Proc Natl Acad Sci USA 105, 8102–8107.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Erauso, G., Stedman, K.M., van de Werken, H.J.G., Zillig, W., and van der Oost, J. (2006). Two novel conjugative plasmids from a single strain of Sulfolobus. Microbiol 152, 1951–1968.CrossRefGoogle Scholar
  36. Fukuda, W., Morimoto, N., Imanaka, T., and Fujiwara, S. (2008). Agmatine is essential for the cell growth of Thermococcus kodakaraensis. FEMS Microbiol Lett 287, 113–120.PubMedCrossRefGoogle Scholar
  37. Garrett, R.A., Shah, S.A., Erdmann, S., Liu, G., Mousaei, M., León-Sobrino, C., Peng, W., Gudbergsdottir, S., Deng, L., Vestergaard, G., Peng, X., and She, Q. (2015). CRISPR-Cas adaptive immune systems of the Sulfolobales: unravelling their complexity and diversity. Life 5, 783–817.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Garrett, R.A., Shah, S.A., Vestergaard, G., Deng, L., Gudbergsdottir, S., Kenchappa, C.S., Erdmann, S., and She, Q. (2011). CRISPR-based immune systems of the Sulfolobales: complexity and diversity. Biochm Soc Trans 39, 51–57.CrossRefGoogle Scholar
  39. Grabowski, B., and Kelman, Z. (2003). Archaeal DNA replication: eukaryal proteins in a bacterial context. Annu Rev Microbiol 57, 487–516.PubMedCrossRefGoogle Scholar
  40. Greve, B., Jensen, S., Brügger, K., Zillig, W., and Garrett, R.A. (2004). Genomic comparison of archaeal conjugative plasmids from Sulfolobus. Archaea 1, 231–239.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Greve, B., Jensen, S., Phan, H., Brügger, K., Zillig, W., She, Q., and Garrett, R.A. (2005). Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus. Archaea 1, 319–325.PubMedCrossRefGoogle Scholar
  42. Grogan, D.W. (2003). Cytosine methylation by the SuaI restriction-modification system: implications for genetic fidelity in a hyperthermophilic archaeon. J Bacteriol 185, 4657–4661.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Grogan, D.W., Carver, G.T., and Drake, J.W. (2001). Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98, 7928–7933.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gudbergsdottir, S., Deng, L., Chen, Z., Jensen, J.V.K., Jensen, L.R., She, Q., and Garrett, R.A. (2011). Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers. Mol Microbiol 79, 35–49.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Guo, L., Brügger, K., Liu, C., Shah, S.A., Zheng, H., Zhu, Y., Wang, S., Lillestøl, R.K., Chen, L., Frank, J., Prangishvili, D., Paulin, L., She, Q., Huang, L., and Garrett, R.A. (2011). Genome analyses of icelandic strains of Sulfolobus islandicus, model organisms for genetic and virushost interaction studies. J Bacteriol 193, 1672–1680.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hansen, J.E., Dill, A.C., and Grogan, D.W. (2005). Conjugational genetic exchange in the hyperthermophilic archaeon Sulfolobus acidocaldarius: intragenic recombination with minimal dependence on marker separation. J Bacteriol 187, 805–809.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hileman, T.H., and Santangelo, T.J. (2012). Genetics techniques for Thermococcus kodakarensis. Front Microbiol 3, 195.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hjort, K., and Bernander, R. (2001). Cell cycle regulation in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. Mol Microbiol 40, 225–234.PubMedCrossRefGoogle Scholar
  49. Hong, Y., Chu, M., Li, Y., Ni, J., Sheng, D., Hou, G., She, Q., and Shen, Y. (2012). Dissection of the functional domains of an archaeal Holliday junction helicase. DNA Repair 11, 102–111.PubMedCrossRefGoogle Scholar
  50. Huang, Q., Li, Y., Zeng, C., Song, T., Yan, Z., Ni, J., She, Q., and Shen, Y. (2015a). Genetic analysis of the Holliday junction resolvases Hje and Hjc in Sulfolobus islandicus. Extremophiles 19, 505–514.PubMedCrossRefGoogle Scholar
  51. Huang, Q., Liu, L., Liu, J., Ni, J., She, Q., and Shen, Y. (2015b). Efficient 5′-3′ DNA end resection by HerA and NurA is essential for cell viability in the crenarchaeon Sulfolobus islandicus. BMC Mol Biol 16, 2.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hwang, S., Choi, K.H., Yoon, N., and Cha, J. (2015). Improvement of a Sulfolobus-E. coli shuttle vector for heterologous gene expression in Sulfolobus acidocaldarius. J Microbiol Biotechnol 25, 196–205.PubMedCrossRefGoogle Scholar
  53. Ishino, Y., and Narumi, I. (2015). DNA repair in hyperthermophilic and hyperradioresistant microorganisms. Curr Opin Microbiol 25, 103–112.PubMedCrossRefGoogle Scholar
  54. Jaubert, C., Danioux, C., Oberto, J., Cortez, D., Bize, A., Krupovic, M., She, Q., Forterre, P., Prangishvili, D., and Sezonov, G. (2013). Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon. Open Biol 3, 130010–130010.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jonuscheit, M., Martusewitsch, E., Stedman, K.M., and Schleper, C. (2003). A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Mol Microbiol 48, 1241–1252.PubMedCrossRefGoogle Scholar
  56. Kawarabayasi, Y., Hino, Y., Horikawa, H., Jin-no, K., Takahashi, M., Sekine, M., Baba, S., Ankai, A., Kosugi, H., Hosoyama, A., Fukui, S., Nagai, Y., Nishijima, K., Otsuka, R., Nakazawa, H., Takamiya, M., Kato, Y., Yoshizawa, T., Tanaka, T., Kudoh, Y., Yamazaki, J., Kushida, N., Oguchi, A., Aoki, K., Masuda, S., Yanagii, M., Nishimura, M., Yamagishi, A., Oshima, T., and Kikuchi, H. (2001). Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8, 123–140.PubMedCrossRefGoogle Scholar
  57. Keeling, P.J., Klenk, H.P., Singh, R.K., Feeley, O., Schleper, C., Zillig, W., Doolittle, W.F., and Sensen, C.W. (1996). Complete nucleotide sequence of the Sulfolobus islandicus multicopy plasmid pRN1. Plasmid 35, 141–144.PubMedCrossRefGoogle Scholar
  58. Keeling, P.J., Klenk, H.P., Singh, R.K., Schenk, M.E., Sensen, C.W., Zillig, W., and Doolittle, W.F. (1998). Sulfolobus islandicus plasmids pRN1 and pRN2 share distant but common evolutionary ancestry. Extremophiles 2, 391–393.PubMedCrossRefGoogle Scholar
  59. Kelman, Z., and White, M.F. (2005). Archaeal DNA replication and repair. Curr Opin Microbiol 8, 669–676.PubMedCrossRefGoogle Scholar
  60. Kletzin, A., Lieke, A., Urich, T., Charlebois, R.L., and Sensen, C.W. (1999). Molecular analysis of pDL10 from Acidianus ambivalens reveals a family of related plasmids from extremely thermophilic and acidophilic archaea. Genetics 152, 1307–1314.PubMedPubMedCentralGoogle Scholar
  61. Leigh, J.A., Albers, S.V., Atomi, H., and Allers, T. (2011). Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 35, 577–608.PubMedCrossRefGoogle Scholar
  62. Li, X., Guo, L., Deng, L., Feng, D., Ren, Y., Chu, Y., She, Q., and Huang, L. (2011). Deletion of the topoisomerase III gene in the hyperthermophilic archaeon Sulfolobus islandicus results in slow growth and defects in cell cycle control. J Genet Genomics 38, 253–259.PubMedCrossRefGoogle Scholar
  63. Li, Y., Pan, S., Zhang, Y., Ren, M., Feng, M., Peng, N., Chen, L., Liang, Y.X., and She, Q. (2016). Harnessing type I and type III CRISPR-Cas systems for genome editing. Nucleic Acids Res 44, e34–e34.PubMedCrossRefGoogle Scholar
  64. Liang, P.J., Han, W.Y., Huang, Q.H., Li, Y.Z., Ni, J.F., She, Q.X., and Shen, Y.L. (2013). Knockouts of RecA-like proteins RadC1 and RadC2 have distinct responses to DNA damage agents in Sulfolobus islandicus. J Genet Genomics 40, 533–542.PubMedCrossRefGoogle Scholar
  65. Lintner, N.G., Kerou, M., Brumfield, S.K., Graham, S., Liu, H., Naismith, J.H., Sdano, M., Peng, N., She, Q., Copié, V., Young, M.J., White, M.F., and Lawrence, C.M. (2011). Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). J Biol Chem 286, 21643–21656.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lipps, G. (2009). Molecular biology of the pRN1 plasmid from Sulfolobus islandicus. Biochm Soc Trans 37, 42–45.CrossRefGoogle Scholar
  67. Liu, G., She, Q., and Garrett, R.A. (2016). Diverse CRISPR-Cas responses and dramatic cellular DNA changes and cell death in pKEF9-conjugated Sulfolobus species. Nucleic Acids Res 44, 4233–4242.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Liu, H., Han, J., Liu, X., Zhou, J., and Xiang, H. (2011). Development of pyrF-based gene knockout systems for genome-wide manipulation of the archaea Haloferax mediterranei and Haloarcula hispanica. J Genet Genomics 38, 261–269.PubMedCrossRefGoogle Scholar
  69. Liu, T., Li, Y., Wang, X., Ye, Q., Li, H., Liang, Y., She, Q., and Peng, N. (2015). Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition. Nucleic Acids Res 43, 1044–1055.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ma, X., Hong, Y., Han, W., Sheng, D., Ni, J., Hou, G., and Shen, Y. (2011). Single-stranded DNA binding activity of XPBI, but not XPBII, from Sulfolobus tokodaii causes double-stranded DNA melting. Extremophiles 15, 67–76.PubMedCrossRefGoogle Scholar
  71. Maezato, Y., Daugherty, A., Dana, K., Soo, E., Cooper, C., Tachdjian, S., Kelly, R.M., and Blum, P. (2011). VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus. RNA 17, 1381–1392.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Manica, A., and Schleper, C. (2013). CRISPR-mediated defense mechanisms in the hyperthermophilic archaeal genus Sulfolobus. RNA Biol 10, 671–678.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Manica, A., Zebec, Z., Steinkellner, J., and Schleper, C. (2013). Unexpectedly broad target recognition of the CRISPR-mediated virus defence system in the archaeon Sulfolobus solfataricus. Nucleic Acids Res 41, 10509–10517.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Manica, A., Zebec, Z., Teichmann, D., and Schleper, C. (2011). In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon. Mol Microbiol 80, 481–491.PubMedCrossRefGoogle Scholar
  75. Mao, D., and Grogan, D. (2012). Genomic evidence of rapid, global-scale gene flow in a Sulfolobus species. ISME J 6, 1613–1616.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Martin, A., Yeats, S., Janekovic, D., Reiter, W.D., Aicher, W., and Zillig, W. (1984). SAV 1, a temperate u.v.-inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12. EMBO J 3, 2165–2168.PubMedPubMedCentralGoogle Scholar
  77. Martusewitsch, E., Sensen, C.W., and Schleper, C. (2000). High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J Bacteriol 182, 2574–2581.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Matsumi, R., Manabe, K., Fukui, T., Atomi, H., and Imanaka, T. (2007). Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance. J Bacteriol 189, 2683–2691.PubMedPubMedCentralCrossRefGoogle Scholar
  79. McCarthy, S., Gradnigo, J., Johnson, T., Payne, S., Lipzen, A., Martin, J., Schackwitz, W., Moriyama, E., and Blum, P. (2015). Complete genome sequence of Sulfolobus solfataricus strain 98/2 and evolved derivatives. Genome Announc 3, e00549–15.PubMedPubMedCentralGoogle Scholar
  80. Mei, Y., Peng, N., Zhao, S., Hu, Y., Wang, H., Liang, Y., and She, Q. (2012). Exceptional thermal stability and organic solvent tolerance of an esterase expressed from a thermophilic host. Appl Microbiol Biotechnol 93, 1965–1974.PubMedCrossRefGoogle Scholar
  81. Mohanraju, P., Makarova, K.S., Zetsche, B., Zhang, F., Koonin, E.V., and van der Oost, J. (2016). Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353, aad5147.PubMedCrossRefGoogle Scholar
  82. Peng, N., Ao, X., Liang, Y.X., and She, Q. (2011). Archaeal promoter architecture and mechanism of gene activation: figure 1. Biochm Soc Trans 39, 99–103.CrossRefGoogle Scholar
  83. Peng, N., Deng, L., Mei, Y., Jiang, D., Hu, Y., Awayez, M., Liang, Y., and She, Q. (2012a). A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus. Appl Environ Microbiol 78, 5630–5637.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Peng, N., Xia, Q., Chen, Z., Liang, Y.X., and She, Q. (2009). An upstream activation element exerting differential transcriptional activation on an archaeal promoter. Mol Microbiol 74, 928–939.PubMedCrossRefGoogle Scholar
  85. Peng, W., Feng, M., Feng, X., Liang, Y.X., and She, Q. (2015). An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. Nucleic Acids Res 43, 406–417.PubMedCrossRefGoogle Scholar
  86. Peng, W., Li, H., Hallstrøm, S., Peng, N., Liang, Y.X., and She, Q. (2013). Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus. RNA Biol 10, 738–748.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Peng, X., Garrett, R.A., and She, Q.X. (2012b). Archaeal viruses—novel, diverse and enigmatic. Sci China Life Sci 55, 422–433.PubMedCrossRefGoogle Scholar
  88. Peng, X., Holz, I., Zillig, W., Garrett, R.A., and She, Q. (2000). Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus. J Mol Biol 303, 449–454.PubMedCrossRefGoogle Scholar
  89. Petitjean, C., Deschamps, P., López-García, P., and Moreira, D. (2015). Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom proteoarchaeota. Genome Biol Evol 7, 191–204.CrossRefGoogle Scholar
  90. Prato, S., Cannio, R., Klenk, H.P., Contursi, P., Rossi, M., and Bartolucci, S. (2006). pIT3, a cryptic plasmid isolated from the hyperthermophilic crenarchaeon Sulfolobus solfataricus IT3. Plasmid 56, 35–45.PubMedCrossRefGoogle Scholar
  91. Purschke, W.G., and Schäfer, G. (2001). Independent replication of the plasmids pRN1 and pRN2 in the archaeon Sulfolobus islandicus. FEMS Microbiol Lett 200, 97–102.PubMedCrossRefGoogle Scholar
  92. Redder, P., and Garrett, R.A. (2006). Mutations and rearrangements in the genome of Sulfolobus solfataricus P2. J Bacteriol 188, 4198–4206.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Reilly, M.S., and Grogan, D.W. (2001). Characterization of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange. J Bacteriol 183, 2943–2946.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Reno, M.L., Held, N.L., Fields, C.J., Burke, P.V., and Whitaker, R.J. (2009). Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA 106, 8605–8610.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Richards, J.D., Cubeddu, L., Roberts, J., Liu, H., and White, M.F. (2008). The archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner. J Mol Biol 376, 634–644.PubMedCrossRefGoogle Scholar
  96. Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng, J.F., Darling, A., Malfatti, S., Swan, B.K., Gies, E.A., Dodsworth, J.A., Hedlund, B.P., Tsiamis, G., Sievert, S.M., Liu, W.T., Eisen, J.A., Hallam, S.J., Kyrpides, N.C., Stepanauskas, R., Rubin, E.M., Hugenholtz, P., and Woyke, T. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437.PubMedCrossRefGoogle Scholar
  97. Roberts, J.A., Bell, S.D., and White, M.F. (2003). An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA. Mol Microbiol 48, 361–371.PubMedCrossRefGoogle Scholar
  98. Rudolf, J., Makrantoni, V., Ingledew, W.J., Stark, M.J.R., and White, M.F. (2006). The DNA repair helicases XPD and FancJ have essential ironsulfur domains. Mol Cell 23, 801–808.PubMedCrossRefGoogle Scholar
  99. Ruggero, D., and Londei, P. (1996). Differential antibiotic sensitivity determined by the large ribosomal subunit in thermophilic archaea. J Bacteriol 178, 3396–3398.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Samson, R.Y., Xu, Y., Gadelha, C., Stone, T.A., Faqiri, J.N., Li, D., Qin, N., Pu, F., Liang, Y.X., She, Q., and Bell, S.D. (2013). Specificity and function of archaeal DNA replication initiator proteins. Cell Rep 3, 485–496.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sato, T., Fukui, T., Atomi, H., and Imanaka, T. (2003). Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185, 210–220.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sato, T., Fukui, T., Atomi, H., and Imanaka, T. (2005). Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol 71, 3889–3899.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Schelert, J., Dixit, V., Hoang, V., Simbahan, J., Drozda, M., and Blum, P. (2004). Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186, 427–437.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Schelert, J., Drozda, M., Dixit, V., Dillman, A., and Blum, P. (2006). Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus. J Bacteriol 188, 7141–7150.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Schelert, J., Rudrappa, D., Johnson, T., and Blum, P. (2013). Role of MerH in mercury resistance in the archaeon Sulfolobus solfataricus. Microbiology 159, 1198–1208.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Schleper, C., Holz, I., Janekovic, D., Murphy, J., and Zillig, W. (1995). A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J Bacteriol 177, 4417–4426.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Schleper, C., Kubo, K., and Zillig, W. (1992). The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc Natl Acad Sci USA 89, 7645–7649.PubMedPubMedCentralCrossRefGoogle Scholar
  108. She, Q., Deng, L., Zhu, H., Chen, Z., Dreibrøl, M., Awayez, M., and Liang, Y.X. (2008). Host-vector systems for hyperthermophilic archaeon Sulfolobus. In Microbes and the Environment: Perspective and Challenges, S.J. Liu, and H.L. Drake, eds. (Beijing: Science Press), pp. 151–156.Google Scholar
  109. She, Q., Phan, H., Garrett, R.A., Albers, S.V., Stedman, K.M., and Zillig, W. (1998). Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon. Extremophiles 2, 417–425.PubMedCrossRefGoogle Scholar
  110. She, Q., Singh, R.K., Confalonieri, F., Zivanovic, Y., Allard, G., Awayez, M.J., Chan-Weiher, C.C.Y., Groth Clausen, I., Curtis, B.A., De Moors, A., Erauso, G., Fletcher, C., Gordon, P.M.K., Heikamp-de Jong, I., Jeffries, A.C., Kozera, C.J., Medina, N., Peng, X., Phan Thi-Ngoc, H., Redder, P., Schenk, M.E., Theriault, C., Tolstrup, N., Charlebois, R.L., Ford Doolittle, W., Duguet, M., Gaasterland, T., Garrett, R.A., Ragan, M.A., Sensen, C.W., and Van der Oost, J. (2001). The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98, 7835–7840.PubMedPubMedCentralCrossRefGoogle Scholar
  111. She, Q., Zhang, C., Deng, L., Peng, N., Chen, Z., and Liang, Y.X. (2009). Genetic analyses in the hyperthermophilic archaeon Sulfolobus islandicus. Biochm Soc Trans 37, 92–96.CrossRefGoogle Scholar
  112. Song, X., Huang, Q., Ni, J., Yu, Y., and Shen, Y. (2016a). Knockout and functional analysis of two DExD/H-box family helicase genes in Sulfolobus islandicus REY15A. Extremophiles 20, 537–546.PubMedCrossRefGoogle Scholar
  113. Song, X., Ni, J., and Shen, Y. (2016b). Structure-based genetic analysis of Hel308a in the hyperthermophilic archaeon Sulfolobus islandicus. J Genet Genomics 43, 405–413.PubMedCrossRefGoogle Scholar
  114. Spang, A., Saw, J.H., Jørgensen, S.L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A.E., van Eijk, R., Schleper, C., Guy, L., and Ettema, T.J.G. (2015). Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Stedman, K.M., Schleper, C., Rumpf, E., and Zillig, W. (1999). Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus: construction and testing of viral shuttle vectors. Genetics 152, 1397–1405.PubMedPubMedCentralGoogle Scholar
  116. Stedman, K.M., She, Q., Phan, H., Arnold, H.P., Holz, I., Garrett, R.A., and Zillig, W. (2003). Relationships between fuselloviruses infecting the extremely thermophilic archaeon Sulfolobus: SSV1 and SSV2. Res Microbiol 154, 295–302.PubMedCrossRefGoogle Scholar
  117. Stedman, K.M., She, Q., Phan, H., Holz, I., Singh, H., Prangishvili, D., Garrett, R., and Zillig, W. (2000). pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus: insights into recombination and conjugation in crenarchaeota. J Bacteriol 182, 7014–7020.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Suzuki, S., and Kurosawa, N. (2016). Disruption of the gene encoding restriction endonuclease SuaI and development of a host-vector system for the thermoacidophilic archaeon Sulfolobus acidocaldarius. Extremophiles 20, 139–148.PubMedCrossRefGoogle Scholar
  119. Szabó, Z., Sani, M., Groeneveld, M., Zolghadr, B., Schelert, J., Albers, S.V., Blum, P., Boekema, E.J., and Driessen, A.J.M. (2007). Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus. J Bacteriol 189, 4305–4309.PubMedPubMedCentralCrossRefGoogle Scholar
  120. van Wolferen, M., Ajon, M., Driessen, A.J.M., and Albers, S.V. (2013). Molecular analysis of the UV-inducible pili operon from Sulfolobus acidocaldarius. Microbiologyopen 2, 928–937.PubMedPubMedCentralCrossRefGoogle Scholar
  121. van Wolferen, M., Ma, X., and Albers, S.V. (2015). DNA processing proteins involved in the UV-induced stress response of Sulfolobales. J Bacteriol 197, 2941–2951.PubMedPubMedCentralCrossRefGoogle Scholar
  122. van Wolferen, M., Wagner, A., van der Does, C., and Albers, S.V. (2016). The archaeal Ced system imports DNA. Proc Natl Acad Sci USA 113, 2496–2501.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Villafane, A., Voskoboynik, Y., Ruhl, I., Sannino, D., Maezato, Y., Blum, P., and Bini, E. (2011). CopR of Sulfolobus solfataricus represents a novel class of archaeal-specific copper-responsive activators of transcription. Microbiol 157, 2808–2817.CrossRefGoogle Scholar
  124. Waege, I., Schmid, G., Thumann, S., Thomm, M., and Hausner, W. (2010). Shuttle vector-based transformation system for Pyrococcus furiosus. Appl Environ Microbiol 76, 3308–3313.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wagner, M., van Wolferen, M., Wagner, A., Lassak, K., Meyer, B.H., Reimann, J., and Albers, S.V. (2012). Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius. Front Microbiol 3, 214.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Wang, H., Peng, N., Shah, S.A., Huang, L., and She, Q. (2015). Archaeal extrachromosomal genetic elements. Microbiol Mol Biol Rev 79, 117–152.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wang, L., Sheng, D.H., Han, W.Y., Huang, B., Zhu, S.S., Ni, J.F., Li, J., and Shen, Y.L. (2012). Sulfolobus tokodaii RadA paralog, stRadC2, is involved in DNA recombination via interaction with RadA and Hjc. Sci China Life Sci 55, 261–267.PubMedCrossRefGoogle Scholar
  128. Wang, Y., Duan, Z., Zhu, H., Guo, X., Wang, Z., Zhou, J., She, Q., and Huang, L. (2007). A novel Sulfolobus non-conjugative extrachromosomal genetic element capable of integration into the host genome and spreading in the presence of a fusellovirus. Virology 363, 124–133.PubMedCrossRefGoogle Scholar
  129. Wiedenheft, B., Sternberg, S.H., and Doudna, J.A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338.PubMedCrossRefGoogle Scholar
  130. Woese, C.R., and Fox, G.E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74, 5088–5090.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Woese, C.R., Kandler, O., and Wheelis, M.L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87, 4576–4579.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wong, J.H.Y., Brown, J.A., Suo, Z., Blum, P., Nohmi, T., and Ling, H. (2010). Structural insight into dynamic bypass of the major cisplatin-DNA adduct by Y-family polymerase Dpo4. EMBO J 29, 2059–2069.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Worthington, P., Hoang, V., Perez-Pomares, F., and Blum, P. (2003). Targeted disruption of the α-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 185, 482–488.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Xiang, X., Huang, X., Wang, H., and Huang, L. (2015). pTC plasmids from Sulfolobus species in the geothermal area of Tengchong, China: genomic conservation and naturally-occurring variations as a result of transposition by mobile genetic elements. Life 5, 506–520.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Yan, Z., Huang, Q., Ni, J., and Shen, Y. (2016). Distinct catalytic activity and in vivo roles of the ExoIII and EndoIV AP endonucleases from Sulfolobus islandicus. Extremophiles 20, 785–793.PubMedCrossRefGoogle Scholar
  136. Zebec, Z., Manica, A., Zhang, J., White, M.F., and Schleper, C. (2014). CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Res 42, 5280–5288.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Zebec, Z., Zink, I.A., Kerou, M., and Schleper, C. (2016). Efficient CRISPR-mediated post-transcriptional gene silencing in a hyperthermophilic archaeon using multiplexed crRNA expression. G3 (Bethesda) 6, 3161–3168.Google Scholar
  138. Zhang, C., Cooper, T.E., Krause, D.J., and Whitaker, R.J. (2013a). Augmenting the genetic toolbox for Sulfolobus islandicus with a stringent positive selectable marker for agmatine prototrophy. Appl Environ Microbiol 79, 5539–5549.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zhang, C., Guo, L., Deng, L., Wu, Y., Liang, Y., Huang, L., and She, Q. (2010). Revealing the essentiality of multiple archaeal pcna genes using a mutant propagation assay based on an improved knockout method. Microbiol 156, 3386–3397.CrossRefGoogle Scholar
  140. Zhang, C., Krause, D.J., and Whitaker, R.J. (2013b). Sulfolobus islandicus: a model system for evolutionary genomics. Biochm Soc Trans 41, 458–462.CrossRefGoogle Scholar
  141. Zhang, C., She, Q., Bi, H., and Whitaker, R.J. (2016). The apt/6-methylpurine counterselection system and its applications in genetic studies of the hyperthermophilic archaeon Sulfolobus islandicus. Appl Environ Microbiol 82, 3070–3081.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zhang, C., Tian, B., Li, S., Ao, X., Dalgaard, K., Gökce, S., Liang, Y., and She, Q. (2013c). Genetic manipulation in Sulfolobus islandicus and functional analysis of DNA repair genes. Biochm Soc Trans 41, 405–410.CrossRefGoogle Scholar
  143. Zhang, C., and Whitaker, R.J. (2012). A broadly applicable gene knockout system for the thermoacidophilic archaeon Sulfolobus islandicus based on simvastatin selection. Microbiol 158, 1513–1522.CrossRefGoogle Scholar
  144. Zheng, T., Huang, Q., Zhang, C., Ni, J., She, Q., and Shen, Y. (2012). Development of a simvastatin selection marker for a hyperthermophilic acidophile, Sulfolobus islandicus. Appl Environ Microbiol 78, 568–574.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zillig, W., Arnold, H.P., Holz, I., Prangishvili, D., Schweier, A., Stedman, K., She, Q., Phan, H., Garrett, R., and Kristjansson, J.K. (1998). Genetic elements in the extremely thermophilic archaeon Sulfolobus. Extremophiles 2, 131–140.PubMedCrossRefGoogle Scholar
  146. Zillig, W., Kletzin, A., Schleper, C., Holz, I., Janekovic, D., Hain, J., Lanzendörfer, M., and Kristjansson, J.K. (1993). Screening for Sulfolobales, their plasmids and their viruses in icelandic solfataras. Syst Appl Microbiol 16, 609–628.CrossRefGoogle Scholar
  147. Zillig, W., Stetter, K.O., Wunderl, S., Schulz, W., Priess, H., and Scholz, I. (1980). The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125, 259–269.CrossRefGoogle Scholar
  148. Zolghadr, B., Weber, S., Szabó, Z., Driessen, A.J.M., and Albers, S.V. (2007). Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus. Mol Microbiol 64, 795–806.PubMedCrossRefGoogle Scholar
  149. Aagaard, C., Leviev, I., Aravalli, R.N., Forterre, P., Prieur, D., and Garrett, R.A. (1996). General vectors for archaeal hyperthermophiles: strategies based on a mobile intron and a plasmid. FEMS Microbiol Rev 18, 93–104.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2017

Authors and Affiliations

  • Nan Peng
    • 1
  • Wenyuan Han
    • 2
  • Yingjun Li
    • 1
    • 2
  • Yunxiang Liang
    • 1
  • Qunxin She
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  2. 2.Archaeal Centre, Department of BiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations