Science China Life Sciences

, Volume 59, Issue 12, pp 1218–1223 | Cite as

Tissue-resident natural killer cells in the livers

  • Hui Peng
  • Zhigang Tian
Open Access


Nature killer (NK) cells are important lymphocytes of the innate immune system, well known for their pivotal roles in immune surveillance and defense against tumor and virus-infected cells. Current studies have revealed that NK cells are not a homogeneous population, but instead consist of distinct subsets with diverse characteristics. As an organ with predominant innate immunity, the liver is enriched with NK cells, among which two distinct NK cell subsets have recently been identified: conventional NK (cNK) cells and tissue-resident NK (trNK) cells. Liver trNK cells are markedly different from cNK cells in many aspects, representing a new lineage of innate lymphoid cell (ILC) family. Here, we summarize the phenotypic and functional features of liver trNK cells, and review current knowledge regarding developmental pathway of liver trNK cells. We also overview recent advances in human liver trNK cells and discuss the striking shared hallmarks of trNK cells in different tissues.


liver conventional NK cell tissue-resident NK cell development function 



This work was supported by theMinistry of Science & Technology of China (2013CB944902), and the Natural Science Foundation of China (81361120388, 81571522, 31300727, 91542114, 91442112)


  1. Araujo, P., Gonçalves, G., Latini, F., Ferreira, O., Porto, L.C., Barreto, J.A., Girao, M.J.C., and Diaz, R.S. (2014). KIR and a specific HLA-C gene are associated with susceptibility and resistance to hepatitis B virus infection in a Brazilian population. Cell Mol Immunol 11, 609–612.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bankovich, A.J., Shiow, L.R., and Cyster, J.G. (2010). CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane Helix 4. J Biol Chem 285, 22328–22337.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Burt, B.M., Plitas, G., Zhao, Z., Bamboat, Z.M., Nguyen, H.M., Dupont, B., and DeMatteo, R.P. (2009). The lytic potential of human liver NK cells is restricted by their limited expression of inhibitory killer Ig-like receptors. J Immunol 183, 1789–1796.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Constantinides, M.G., McDonald, B.D., Verhoef, P.A., and Bendelac, A. (2014). A committed precursor to innate lymphoid cells. Nature 508, 397–401.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cooper, M.A., Elliott, J.M., Keyel, P.A., Yang, L., Carrero, J.A., and Yokoyama, W.M. (2009). Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci USA 106, 1915–1919.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cortez, V.S., Cervantes-Barragan, L., Robinette, M.L., Bando, J.K., Wang, Y., Geiger, T.L., Gilfillan, S., Fuchs, A., Vivier, E., Sun, J.C., Cella, M., and Colonna, M. (2016). Transforming growth factor-ß signaling guides the differentiation of innate lymphoid cells in salivary glands. Immunity 44, 1127–1139.CrossRefPubMedGoogle Scholar
  7. Cortez, V.S., Fuchs, A., Cella, M., Gilfillan, S., and Colonna, M. (2014). Cutting edge: salivary gland NK cells develop independently of Nfil3 in steady-state. J Immunol 192, 4487–4491.CrossRefPubMedGoogle Scholar
  8. Crosbie, O.M., Reynolds, M., McEntee, G., Traynor, O., Hegarty, J.E., and O’Farrelly, C. (1999). In vitro evidence for the presence of hematopoietic stem cells in the adult human liver. Hepatology 29, 1193–1198.CrossRefPubMedGoogle Scholar
  9. Crotta, S., Gkioka, A., Male, V., Duarte, J.H., Davidson, S., Nisoli, I., Brady, H.J.M., and Wack, A. (2014). The transcription factor E4BP4 is not required for extramedullary pathways of NK cell development. J Immunol 192, 2677–2688.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dahlberg, C.I.M., Sarhan, D., Chrobok, M., Duru, A.D., and Alici, E. (2015). Natural killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity. Front Immunol 6, 605.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Daussy, C., Faure, F., Mayol, K., Viel, S., Gasteiger, G., Charrier, E., Bienvenu, J., Henry, T., Debien, E., Hasan, U.A., Marvel, J., Yoh, K., Takahashi, S., Prinz, I., de Bernard, S., Buffat, L., and Walzer, T. (2014). T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 211, 563–577.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eissens, D.N., Michelo, C.M., Preijers, F.W.M.B., van Cranenbroek, B., van Houwelingen, K., van der Meer, A., and Joosten, I. (2014). Selective expansion of human natural killer cells leads to enhanced alloreactivity. Cell Mol Immunol 11, 160–168.CrossRefPubMedGoogle Scholar
  13. Erick, T.K., and Brossay, L. (2016). Phenotype and functions of conventional and non-conventional NK cells. Curr Opin Immunol 38, 67–74.CrossRefPubMedGoogle Scholar
  14. Fahey, S., Dempsey, E., and Long, A. (2014). The role of chemokines in acute and chronic hepatitis C infection. Cell Mol Immunol 11, 25–40.CrossRefPubMedGoogle Scholar
  15. Fasbender, F., Widera, A., Hengstler, J.G., and Watzl, C. (2016). Natural killer cells and liver fibrosis. Front Immunol 7, 19.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Foley, B., Cooley, S., Verneris, M.R., Curtsinger, J., Luo, X., Waller, E.K., Anasetti, C., Weisdorf, D., and Miller, J.S. (2012). Human cytomegalovirus (CMV)-induced memory-like NKG2C+ NK cells are transplantable and expand in vivo in response to recipient CMV antigen. J Immunol 189, 5082–5088.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gao, B., Jeong, W.I., and Tian, Z. (2008). Liver: an organ with predominant innate immunity. Hepatology 47, 729–736.CrossRefPubMedGoogle Scholar
  18. Gasteiger, G., Fan, X., Dikiy, S., Lee, S.Y., and Rudensky, A.Y. (2015). Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Geiger, T.L., Abt, M.C., Gasteiger, G., Firth, M.A., O’Connor, M.H., Geary, C.D., O’Sullivan, T.E., van den Brink, M.R., Pamer, E.G., Hanash, A.M., and Sun, J.C. (2014). Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J Exp Med 211, 1723–1731.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gillard, G.O., Bivas-Benita, M., Hovav, A.H., Grandpre, L.E., Panas, M.W., Seaman, M.S., Haynes, B.F., and Letvin, N.L. (2011). Thy1+ Nk cells from vaccinia virus-primed mice confer protection against vaccinia virus challenge in the absence of adaptive lymphocytes. PLoS Pathog 7, e1002141.CrossRefGoogle Scholar
  21. Gordon, S.M., Chaix, J., Rupp, L.J., Wu, J., Madera, S., Sun, J.C., Lindsten, T., and Reiner, S.L. (2012). The transcription factors T-bet and eomes control key checkpoints of natural killer cell maturation. Immunity 36, 55–67.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hudspeth, K., Donadon, M., Cimino, M., Pontarini, E., Tentorio, P., Preti, M., Hong, M., Bertoletti, A., Bicciato, S., Invernizzi, P., Lugli, E., Torzilli, G., Gershwin, M.E., and Mavilio, D. (2016). Human liver-resident CD56bright/CD16neg NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways. J Autoimmun 66, 40–50.CrossRefPubMedGoogle Scholar
  23. Jenne, C.N., and Kubes, P. (2013). Immune surveillance by the liver. Nat Immunol 14, 996–1006.CrossRefPubMedGoogle Scholar
  24. Jost, S., and Altfeld, M. (2013). Control of human viral infections by natural killer cells. Annu Rev Immunol 31, 163–194.CrossRefPubMedGoogle Scholar
  25. Keppel, M.P., Yang, L., and Cooper, M.A. (2013). Murine NK cell intrinsic cytokine-induced memory-like responses are maintained following homeostatic proliferation. J Immunol 190, 4754–4762.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kim, S., Iizuka, K., Kang, H.S.P., Dokun, A., French, A.R., Greco, S., and Yokoyama, W.M. (2002). In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 3, 523–528.CrossRefPubMedGoogle Scholar
  27. Klose, C.S.N., Flach, M., Möhle, L., Rogell, L., Hoyler, T., Ebert, K., Fabiunke, C., Pfeifer, D., Sexl, V., Fonseca-Pereira, D., Domingues, R.G., Veiga-Fernandes, H., Arnold, S.J., Busslinger, M., Dunay, I.R., Tanriver, Y., and Diefenbach, A. (2014). Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356.CrossRefPubMedGoogle Scholar
  28. Kotton, D.N., Fabian, A.J., and Mulligan, R.C. (2005). A novel stem-cell population in adult liver with potent hematopoietic-reconstitution activity. Blood 106, 1574–1580.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Krueger, P.D., Narayanan, S., Surette, F.A., Brown, M.G., Sung, S.S.J., and Hahn, Y.S. (2016). Murine liver-resident group 1 innate lymphoid cells regulate optimal priming of anti-viral CD8+ T cells. J Leukocyte Biol in press, doi: 10.1189/jlb.3A0516-225R.Google Scholar
  30. Ma, Z., Zhang, E., Yang, D., and Lu, M. (2015). Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses. Cell Mol Immunol 12, 273–282.CrossRefPubMedGoogle Scholar
  31. Mackay, L.K., Minnich, M., Kragten, N.A.M., Liao, Y., Nota, B., Seillet, C., Zaid, A., Man, K., Preston, S., Freestone, D., Braun, A., Wynne-Jones, E., Behr, F.M., Stark, R., Pellicci, D.G., Godfrey, D.I., Belz, G.T., Pellegrini, M., Gebhardt, T., Busslinger, M., Shi, W., Carbone, F.R., van Lier, R.A.W., Kallies, A., and van Gisbergen, K.P.J.M. (2016). Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463.CrossRefPubMedGoogle Scholar
  32. Marquardt, N., Béziat, V., Nyström, S., Hengst, J., Ivarsson, M.A., Kekäläinen, E., Johansson, H., Mjösberg, J., Westgren, M., Lankisch, T.O., Wedemeyer, H., Ellis, E.C., Ljunggren, H.G., Michaëlsson, J., and Björkström, N.K. (2015). Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. JI 194, 2467–2471.Google Scholar
  33. Moroso, V., Metselaar, H.J., Mancham, S., Tilanus, H.W., Eissens, D., van der Meer, A., van der Laan, L.J.W., Kuipers, E.J., Joosten, I., and Kwekkeboom, J. (2010). Liver grafts contain a unique subset of natural killer cells that are transferred into the recipient after liver transplantation. Liver Transpl 16, 895–908.CrossRefPubMedGoogle Scholar
  34. O’Leary, J.G., Goodarzi, M., Drayton, D.L., and von Andrian, U.H. (2006). T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7, 507–516.CrossRefPubMedGoogle Scholar
  35. O’Sullivan, T.E., Sun, J.C., and Lanier, L.L. (2015). Natural killer cell memory. Immunity 43, 634–645.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Orkin, S.H., and Zon, L.I. (2008). Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Paust, S., Gill, H.S., Wang, B.Z., Flynn, M.P., Moseman, E.A., Senman, B., Szczepanik, M., Telenti, A., Askenase, P.W., Compans, R.W., and von Andrian, U.H. (2010). Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol 11, 1127–1135.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Peng, H., Jiang, X., Chen, Y., Sojka, D.K., Wei, H., Gao, X., Sun, R., Yokoyama, W.M., and Tian, Z. (2013). Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest 123, 1444–1456.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Peng, H., and Tian, Z. (2015). Re-examining the origin and function of liverresident NK cells. Trends Immunol 36, 293–299.CrossRefPubMedGoogle Scholar
  40. Racanelli, V., and Rehermann, B. (2006). The liver as an immunological organ. Hepatology 43, S54–S62.CrossRefPubMedGoogle Scholar
  41. Rajagopalan, S. (2014). HLA-G-mediated NK cell senescence promotes vascular remodeling: implications for reproduction. Cell Mol Immunol 11, 460–466.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ray, S.J., Franki, S.N., Pierce, R.H., Dimitrova, S., Koteliansky, V., Sprague, A.G., Doherty, P.C., de Fougerolles, A.R., and Topham, D.J. (2004). The collagen binding a1ß1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20, 167–179.CrossRefPubMedGoogle Scholar
  43. Rehermann, B. (2013). Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med 19, 859–868.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Richter, M., Ray, S.J., Chapman, T.J., Austin, S.J., Rebhahn, J., Mosmann, T.R., Gardner, H., Kotelianski, V., deFougerolles, A.R., and Topham, D.J. (2007). Collagen distribution and expreßsion of collagen-binding a1ß1 (VLA-1) and a2ß1 (VLA-2) integrins on CD4 and CD8 T cells during influenza infection. J Immunol 178, 4506–4516.CrossRefPubMedGoogle Scholar
  45. Schuch, A., Hoh, A., and Thimme, R. (2014). The role of natural killer cells and CD8+ T cells in hepatitis B virus infection. Front Immunol 5, 258.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Schuster, I.S., Wikstrom, M.E., Brizard, G., Coudert, J.D., Estcourt, M.J., Manzur, M., O’Reilly, L.A., Smyth, M.J., Trapani, J.A., Hill, G.R., Andoniou, C.E., and Degli-Esposti, M.A. (2014). TRAIL+ NK cells control CD4+ T cell responses during chronic viral infection to limit autoimmunity. Immunity 41, 646–656.CrossRefPubMedGoogle Scholar
  47. Seillet, C., Huntington, N.D., Gangatirkar, P., Axelsson, E., Minnich, M., Brady, H.J.M., Busslinger, M., Smyth, M.J., Belz, G.T., and Carotta, S. (2014a). Differential requirement for Nfil3 during NK cell development. J Immunol 192, 2667–2676.CrossRefPubMedGoogle Scholar
  48. Seillet, C., Rankin, L.C., Groom, J.R., Mielke, L.A., Tellier, J., Chopin, M., Huntington, N.D., Belz, G.T., and Carotta, S. (2014b). Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med 211, 1733–1740.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shi, F.D., Ljunggren, H.G., La Cava, A., and Van Kaer, L. (2011). Organspecific features of natural killer cells. Nat Rev Immunol 11, 658–671.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shiow, L.R., Rosen, D.B., Brdicková, N., Xu, Y., An, J., Lanier, L.L., Cyster, J.G., and Matloubian, M. (2006). CD69 acts downstream of interferon-a/ß to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544.CrossRefPubMedGoogle Scholar
  51. Sojka, D.K., Plougastel-Douglas, B., Yang, L., Pak-Wittel, M.A., Artyomov, M.N., Ivanova, Y., Zhong, C., Chase, J.M., Rothman, P.B., Yu, J., Riley, J.K., Zhu, J., Tian, Z., and Yokoyama, W.M. (2014a). Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3, e01659.CrossRefGoogle Scholar
  52. Sojka, D.K., Tian, Z., and Yokoyama, W.M. (2014b). Tissue-resident natural killer cells and their potential diversity. Semin Immunol 26, 127–131.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Spits, H., and Di Santo, J.P. (2011). The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 12, 21–27.CrossRefPubMedGoogle Scholar
  54. Sun, C., Sun, H., Zhang, C., and Tian, Z. (2015). NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol 12, 292–302.CrossRefPubMedGoogle Scholar
  55. Sun, J.C., Beilke, J.N., and Lanier, L.L. (2009). Adaptive immune features of natural killer cells. Nature 457, 557–561.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Takeda, K., Cretney, E., Hayakawa, Y., Ota, T., Akiba, H., Ogasawara, K., Yagita, H., Kinoshita, K., Okumura, K., and Smyth, M.J. (2005). TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105, 2082–2089.CrossRefPubMedGoogle Scholar
  57. Tang, L., Peng, H., Zhou, J., Chen, Y., Wei, H., Sun, R., Yokoyama, W.M., and Tian, Z. (2016). Differential phenotypic and functional properties of liver-resident NK cells and mucosal ILC1s. J Autoimmun 67, 29–35.CrossRefPubMedGoogle Scholar
  58. Taniguchi, H., Toyoshima, T., Fukao, K., and Nakauchi, H. (1996). Presence of hematopoietic stem cells in the adult liver. Nat Med 2, 198–203.CrossRefPubMedGoogle Scholar
  59. Tayade, C., Fang, Y., Black, G.P., V A, P., Erlebacher, A., and Croy, B.A. (2005). Differential transcription of Eomes and T-bet during maturation of mouse uterine natural killer cells. J Leukocyte Biol 78, 1347–1355.CrossRefPubMedGoogle Scholar
  60. Wang, X.Q., Lo, C.M., Chen, L., Cheung, C.K.Y., Yang, Z.F., Chen, Y.X., Ng, M.N., Yu, W.C., Ming, X., Zhang, W., Ho, D.W.Y., Chan, S.C., and Fan, S.T. (2012). Hematopoietic chimerism in liver transplantation patients and hematopoietic stem/progenitor cells in adult human liver. Hepatology 56, 1557–1566.CrossRefPubMedGoogle Scholar
  61. Xu, R., Huang, H., Zhang, Z., and Wang, F.S. (2014). The role of neutrophils in the development of liver diseases. Cell Mol Immunol 11, 224–231.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yang, D., Liu, L., Zhu, D., Peng, H., Su, L., Fu, Y.X., and Zhang, L. (2014). A mouse model for HBV immunotolerance and immunotherapy. Cell Mol Immunol 11, 71–78.CrossRefPubMedGoogle Scholar
  63. Yang, Q., Li, F., Harly, C., Xing, S., Ye, L., Xia, X., Wang, H., Wang, X., Yu, S., Zhou, X., Cam, M., Xue, H.H., and Bhandoola, A. (2015). TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat Immunol 16, 1044–1050.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yokoyama, W.M., Sojka, D.K., Peng, H., and Tian, Z. (2013). Tissue-resident natural killer cells. Cold Spring Harb Symp Quant Biol 78, 149–156.CrossRefPubMedGoogle Scholar
  65. Yu, X., Wang, Y., Deng, M., Li, Y., Ruhn, K.A., Zhang, C.C., and Hooper, L.V. (2014). The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 3, e04406.CrossRefGoogle Scholar
  66. Zajac, A.J., and Harrington, L.E. (2014). Tissue-resident T cells lose their S1P1 exit visas. Cell Mol Immunol 11, 221–223.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zheng, J., Liang, H., Xu, C., Xu, Q., Zhang, T., Shen, T., and Lu, F. (2014). An unbalanced PD-L1/CD86 ratio in CD14++CD16+ monocytes is correlated with HCV viremia during chronic HCV infection. Cell Mol Immunol 11, 294–304.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zook, E.C., and Kee, B.L. (2016). Development of innate lymphoid cells. Nat Immunol 17, 775–782.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical CenterUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations