Advertisement

Science China Life Sciences

, Volume 60, Issue 1, pp 46–56 | Cite as

The size matters: regulation of lipid storage by lipid droplet dynamics

  • Jinhai Yu
  • Peng LiEmail author
Open Access
Review From CAS Members

Abstract

Adequate energy storage is essential for sustaining healthy life. Lipid droplet (LD) is the subcellular organelle that stores energy in the form of neutral lipids and releases fatty acids under energy deficient conditions. Energy storage capacity of LDs is primarily dependent on the sizes of LDs. Enlargement and growth of LDs is controlled by two molecular pathways: neutral lipid synthesis and atypical LD fusion. Shrinkage of LDs is mediated by the degradation of neutral lipids under energy demanding conditions and is controlled by neutral cytosolic lipases and lysosomal acidic lipases. In this review, we summarize recent progress regarding the regulatory pathways and molecular mechanisms that control the sizes and the energy storage capacity of LDs.

Keywords

lipid storage lipid droplet TAG synthesis atypical LD fusion lipolysis 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31430040, 31321003 to Peng Li, 31501089 to Jinhai Yu), the National Basic Research Program (2013CB530602 to Peng Li), and the China Postdoctoral Science Foundation (2015M581079 to Jinhai Yu).

References

  1. Anand, P., Cermelli, S., Li, Z., Kassan, A., Bosch, M., Sigua, R., Huang, L., Ouellette, A.J., Pol, A., Welte, M.A., and Gross, S.P. (2012). A novel role for lipid droplets in the organismal antibacterial response. eLife 1, e00003.CrossRefGoogle Scholar
  2. Baenke, F., Peck, B., Miess, H., and Schulze, A. (2013). Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech 6, 1353–1363.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barbosa, A.D., Savage, D.B., and Siniossoglou, S. (2015). Lipid dropletorganelle interactions: emerging roles in lipid metabolism. Curr Opin Cell Biol 35, 91–97.PubMedCrossRefGoogle Scholar
  4. Bartz, R., Li, W.H., Venables, B., Zehmer, J.K., Roth, M.R., Welti, R., Anderson, R.G.W., Liu, P., and Chapman, K.D. (2007). Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 48, 837–847.PubMedCrossRefGoogle Scholar
  5. Beller, M., Thiel, K., Thul, P.J., and Jäckle, H. (2010). Lipid droplets: a dynamic organelle moves into focus. FEBS Lett 584, 2176–2182.PubMedCrossRefGoogle Scholar
  6. Bi, J., Wang, W., Liu, Z., Huang, X., Jiang, Q., Liu, G., Wang, Y., and Huang, X. (2014). Seipin promotes adipose tissue fat storage through the ERCa2+-ATPase SERCA. Cell Metab 19, 861–871.PubMedCrossRefGoogle Scholar
  7. Bindlish, S., Presswala, L.S., and Schwartz, F. (2015). Lipodystrophy: syndrome of severe insulin resistance. Postgrad Med 127, 511–516.PubMedCrossRefGoogle Scholar
  8. Brasaemle, D.L., Dolios, G., Shapiro, L., and Wang, R. (2004). Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279, 46835–46842.PubMedCrossRefGoogle Scholar
  9. Brasaemle, D.L., Rubin, B., Harten, I.A., Gruia-Gray, J., Kimmel, A.R., and Londos, C. (2000). Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem 275, 38486–38493.PubMedCrossRefGoogle Scholar
  10. Cai, Y., Goodman, J.M., Pyc, M., Mullen, R.T., Dyer, J.M., and Chapman, K.D. (2015). Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation. Plant Cell 27, 2616–2636.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Camus, G., Vogt, D.A., Kondratowicz, A.S., and Ott, M. (2013). Lipid droplets and viral infections. Methods Cell Biol 116, 167–190.PubMedCrossRefGoogle Scholar
  12. Cartwright, B.R., Binns, D.D., Hilton, C.L., Han, S., Gao, Q., and Goodman, J.M. (2015). Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell 26, 726–739.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cartwright, B.R., and Goodman, J.M. (2012). Seipin: from human disease to molecular mechanism. J Lipid Res 53, 1042–1055.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chamoun, Z., Vacca, F., Parton, R.G., and Gruenberg, J. (2013). PNPLA3/ adiponutrin functions in lipid droplet formation. Biol Cell 105, 219–233.PubMedCrossRefGoogle Scholar
  15. Chen, Y., and Li, P. (2016). Fatty acid metabolism and cancer development. Sci Bull 61, 1473–1479.CrossRefGoogle Scholar
  16. Cohen, B.C., Shamay, A., and Argov-Argaman, N. (2015). Regulation of lipid droplet size in mammary epithelial cells by remodeling of membrane lipid composition—A potential mechanism. PLoS ONE 10, e0121645.Google Scholar
  17. Collins, S., Cao, W., and Robidoux, J. (2004). Learning new tricks from old dogs: ß-adrenergic receptors teach new lessons on firing up adipose tissue metabolism. Mol Endocrinol 18, 2123–2131.PubMedCrossRefGoogle Scholar
  18. Crawford, S.E., and Desselberger, U. (2016). Lipid droplets form complexes with viroplasms and are crucial for rotavirus replication. Curr Opin Virol 19, 11–15.PubMedCrossRefGoogle Scholar
  19. D’Avila, H., Maya-Monteiro, C.M., and Bozza, P.T. (2008). Lipid bodies in innate immune response to bacterial and parasite infections. Int Immunopharmacol 8, 1308–1315.PubMedCrossRefGoogle Scholar
  20. Dichlberger, A., Schlager, S., Maaninka, K., Schneider, W.J., and Kovanen, P.T. (2014). Adipose triglyceride lipase regulates eicosanoid production in activated human mast cells. J Lipid Res 55, 2471–2478.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dupont, N., Chauhan, S., Arko-Mensah, J., Castillo, E.F., Masedunskas, A., Weigert, R., Robenek, H., Proikas-Cezanne, T., and Deretic, V. (2014). Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol 24, 609–620.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dwianingsih, E.K., Takeshima, Y., Itoh, K., Yamauchi, Y., Awano, H., Malueka, R.G., Nishida, A., Ota, M., Yagi, M., and Matsuo, M. (2010). A Japanese child with asymptomatic elevation of serum creatine kinase shows PTRF-CAVIN mutation matching with congenital generalized lipodystrophy type 4. Mol Genets Metab 101, 233–237.CrossRefGoogle Scholar
  23. Farese, R.V., and Walther, T.C. (2016). Lipid droplets go nuclear. J Cell Biol 212, 7–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fei, W., Shui, G., Gaeta, B., Du, X., Kuerschner, L., Li, P., Brown, A.J., Wenk, M.R., Parton, R.G., and Yang, H. (2008). Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180, 473–482.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ferré, P., and Foufelle, F. (2010). Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 12, 83–92.PubMedCrossRefGoogle Scholar
  26. Filipe, A., and McLauchlan, J. (2015). Hepatitis C virus and lipid droplets: finding a niche. Trends Mol Med 21, 34–42.PubMedCrossRefGoogle Scholar
  27. Fischer, J., Lefèvre, C., Morava, E., Mussini, J.M., Laforêt, P., Negre-Salvayre, A., Lathrop, M., and Salvayre, R. (2007). The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet 39, 28–30.PubMedCrossRefGoogle Scholar
  28. Frayn, K.N. (2001). Adipose tissue and the insulin resistance syndrome. Proc Nutr Soc 60, 375–380.PubMedCrossRefGoogle Scholar
  29. Fujimoto, T., and Parton, R.G. (2011). Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol 3, a004838–a004838.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fujimoto, Y., Itabe, H., Kinoshita, T., Homma, K.J., Onoduka, J., Mori, M., Yamaguchi, S., Makita, M., Higashi, Y., Yamashita, A., and Takano, T. (2007). Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7. J Lipid Res 48, 1280–1292.PubMedCrossRefGoogle Scholar
  31. Gandotra, S., Lim, K., Girousse, A., Saudek, V., O’Rahilly, S., and Savage, D.B. (2011). Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J Biol Chem 286, 34998–35006.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gao, Q., and Goodman, J.M. (2015). The lipid droplet—a well-connected organelle. Front Cell Dev Biol 3, 49.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gong, J., Sun, Z., and Li, P. (2009). CIDE proteins and metabolic disorders. Curr Opin Lipidol 20, 121–126.PubMedCrossRefGoogle Scholar
  34. Gong, J., Sun, Z., Wu, L., Xu, W., Schieber, N., Xu, D., Shui, G., Yang, H., Parton, R.G., and Li, P. (2011). Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 195, 953–963.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Grippa, A., Buxó, L., Mora, G., Funaya, C., Idrissi, F.Z., Mancuso, F., Gomez, R., Muntanyà, J., Sabidó, E., and Carvalho, P. (2015). The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites. J Cell Biol 211, 829–844.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gross, D.A., and Silver, D.L. (2014). Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol 49, 304–326.PubMedCrossRefGoogle Scholar
  37. Grundy, S.M. (2015). Adipose tissue and metabolic syndrome: too much, too little or neither. Eur J Clin Invest 45, 1209–1217.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Haemmerle, G., Lass, A., Zimmermann, R., Gorkiewicz, G., Meyer, C., Rozman, J., Heldmaier, G., Maier, R., Theussl, C., Eder, S., Kratky, D., Wagner, E.F., Klingenspor, M., Hoefler, G., and Zechner, R. (2006). Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737.PubMedCrossRefGoogle Scholar
  39. Han, S., Binns, D.D., Chang, Y.F., and Goodman, J.M. (2015). Dissecting seipin function: the localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1p?Nterm only in combination with Ldb16p. BMC Cell Biol 16, 29.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Herman, I.P. (2016). Physics of the Human Body. (Berlin: Springer).CrossRefGoogle Scholar
  41. Hinson, E.R., and Cresswell, P. (2009). The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic a-helix. Proc Natl Acad Sci USA 106, 20452–20457.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Holm, C. (2003). Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochm Soc Trans 31, 1120–1124.CrossRefGoogle Scholar
  43. Jacquier, N., Choudhary, V., Mari, M., Toulmay, A., Reggiori, F., and Schneiter, R. (2011). Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124, 2424–2437.PubMedCrossRefGoogle Scholar
  44. Kassan, A., Herms, A., Ferná ndez-Vidal, A., Bosch, M., Schieber, N.L., Reddy, B.J.N., Fajardo, A., Gelabert-Baldrich, M., Tebar, F., Enrich, C., Gross, S.P., Parton, R.G., and Pol, A. (2013). Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J Cell Biol 203, 985–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kaushik, S., and Cuervo, A.M. (2015). Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol 17, 759–770.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Khelef, N., Buton, X., Beatini, N., Wang, H., Meiner, V., Chang, T.Y., Farese, R.V., Maxfield, F.R., and Tabas, I. (1998). Immunolocalization of acylcoenzyme A:cholesterol O-acyltransferase in macrophages. J Biol Chem 273, 11218–11224.PubMedCrossRefGoogle Scholar
  47. Kimmel, A.R., and Sztalryd, C. (2016). The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu Rev Nutr 36, 471–509.PubMedCrossRefGoogle Scholar
  48. Knoblach, B., and Rachubinski, R.A. (2015). Transport and retention mechanisms govern lipid droplet inheritance in Saccharomyces cerevisiae. Traffic 16, 298–309.PubMedCrossRefGoogle Scholar
  49. Kory, N., Farese, R.V., and Walther, T.C. (2016). Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol 26, 535–546.PubMedCrossRefGoogle Scholar
  50. Krahmer, N., Farese, R.V., and Walther, T.C. (2013). Balancing the fat: lipid droplets and human disease. EMBO Mol Med 5, 973–983.PubMedCrossRefGoogle Scholar
  51. Kuerschner, L., Moessinger, C., and Thiele, C. (2008). Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9, 338–352.PubMedCrossRefGoogle Scholar
  52. Lafontan, M., and Berlan, M. (1993). Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 34, 1057–1091.PubMedGoogle Scholar
  53. Large, V., Peroni, O., Letexier, D., Ray, H., and Beylot, M. (2004). Metabolism of lipids in human white adipocyte. Diabetes Metab 30, 294–309.PubMedCrossRefGoogle Scholar
  54. Lass, A., Zimmermann, R., Haemmerle, G., Riederer, M., Schoiswohl, G., Schweiger, M., Kienesberger, P., Strauss, J.G., Gorkiewicz, G., and Zechner, R. (2006). Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab 3, 309–319.PubMedCrossRefGoogle Scholar
  55. Li, J.Z., Ye, J., Xue, B., Qi, J., Zhang, J., Zhou, Z., Li, Q., Wen, Z., and Li, P. (2007). Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes 56, 2523–2532.PubMedCrossRefGoogle Scholar
  56. Liu, L., Zhang, K., Sandoval, H., Yamamoto, S., Jaiswal, M., Sanz, E., Li, Z., Hui, J., Graham, B.H., Quintana, A., and Bellen, H.J. (2015). Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160, 177–190.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Liu, P., Bartz, R., Zehmer, J.K., Ying, Y., Zhu, M., Serrero, G., and Anderson, R.G.W. (2007). Rab-regulated interaction of early endosomes with lipid droplets. Biochim Biophys Acta 1773, 784–793.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Liu, P., Ying, Y., Zhao, Y., Mundy, D.I., Zhu, M., and Anderson, R.G.W. (2004). Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279, 3787–3792.PubMedCrossRefGoogle Scholar
  59. Lodhi, I.J., and Semenkovich, C.F. (2014). Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab 19, 380–392.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lu, X., Yang, X., and Liu, J. (2010). Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2. Cell Cycle 9, 2791–2797.CrossRefGoogle Scholar
  61. Macpherson, R.E.K., Vandenboom, R., Roy, B.D., and Peters, S.J. (2013). Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation. Physiol Rep 1, e00084.CrossRefGoogle Scholar
  62. Magré, J., Delépine, M., Khallouf, E., Gedde-Dahl, T., Van Maldergem, L., Sobel, E., Papp, J., Meier, M., Mégarbané, A., Bachy, A., Verloes, A., d’Abronzo, F.H., Seemanova, E., Assan, R., Baudic, N., Bourut, C., Czernichow, P., Huet, F., Grigorescu, F., de Kerdanet, M., Lacombe, D., Labrune, P., Lanza, M., Loret, H., Matsuda, F., Navarro, J., Nivelon-Chevalier, A., Polak, M., Robert, J.J., Tric, P., Tubiana-Rufi, N., Vigouroux, C., Weissenbach, J., Savasta, S., Maassen, J.A., Trygstad, O., Bogalho, P., Freitas, P., Medina, J.L., Bonnicci, F., Joffe, B.I., Loyson, G., Panz, V.R., Raal, F.J., O’Rahilly, S., Stephenson, T., Kahn, C.R., Lathrop, M., Capeau, J., and Capeau, J. (2001). Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28, 365–370.PubMedCrossRefGoogle Scholar
  63. Martinez-Botas, J., Anderson, J.B., Tessier, D., Lapillonne, A., Chang, B.H.J., Quast, M.J., Gorenstein, D., Chen, K.H., and Chan, L. (2000). Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Nat Genet 26, 474–479.PubMedCrossRefGoogle Scholar
  64. Mason, R.R., Mokhtar, R., Matzaris, M., Selathurai, A., Kowalski, G.M., Mokbel, N., Meikle, P.J., Bruce, C.R., and Watt, M.J. (2014). PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol Metab 3, 652–663.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Mason, R.R., and Watt, M.J. (2015). Unraveling the roles of PLIN5: linking cell biology to physiology. Trends Endocrinol Metab 26, 144–152.PubMedCrossRefGoogle Scholar
  66. Matsusue, K., Kusakabe, T., Noguchi, T., Takiguchi, S., Suzuki, T., Yamano, S., and Gonzalez, F.J. (2008). Hepatic steatosis in leptin-deficient mice is promoted by the PPAR? target gene Fsp27. Cell Metab 7, 302–311.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Melo, R.C.N., and Weller, P.F. (2016). Lipid droplets in leukocytes: organelles linked to inflammatory responses. Exp Cell Res 340, 193–197.PubMedCrossRefGoogle Scholar
  68. Miyoshi, H., Perfield Ii, J.W., Obin, M.S., and Greenberg, A.S. (2008). Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem 105, 1430–1436.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Miyoshi, H., Souza, S.C., Zhang, H.H., Strissel, K.J., Christoffolete, M.A., Kovsan, J., Rudich, A., Kraemer, F.B., Bianco, A.C., Obin, M.S., and Greenberg, A.S. (2006). Perilipin promotes hormone-sensitive lipasemediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J Biol Chem 281, 15837–15844.PubMedCrossRefGoogle Scholar
  70. Murphy, D.J. (2012). The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249, 541–585.PubMedCrossRefGoogle Scholar
  71. Murphy, S., Martin, S., and Parton, R.G. (2009). Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta 1791, 441–447.PubMedCrossRefGoogle Scholar
  72. Nishino, N., Tamori, Y., Tateya, S., Kawaguchi, T., Shibakusa, T., Mizunoya, W., Inoue, K., Kitazawa, R., Kitazawa, S., Matsuki, Y., Hiramatsu, R., Masubuchi, S., Omachi, A., Kimura, K., Saito, M., Amo, T., Ohta, S., Yamaguchi, T., Osumi, T., Cheng, J., Fujimoto, T., Nakao, H., Nakao, K., Aiba, A., Okamura, H., Fushiki, T., and Kasuga, M. (2008). FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118, 2808.PubMedPubMedCentralGoogle Scholar
  73. Nomura, D.K., Long, J.Z., Niessen, S., Hoover, H.S., Ng, S.W., and Cravatt, B.F. (2010). Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 49–61.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ohsaki, Y., Suzuki, M., and Fujimoto, T. (2014). Open questions in lipid droplet biology. Chem Biol 21, 86–96.PubMedCrossRefGoogle Scholar
  75. Pol, A., Gross, S.P., and Parton, R.G. (2014). Biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol 204, 635–646.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pollak, N.M., Jaeger, D., Kolleritsch, S., Zimmermann, R., Zechner, R., Lass, A., and Haemmerle, G. (2015). The interplay of protein kinase A and perilipin 5 regulates cardiac lipolysis. J Biol Chem 290, 1295–1306.PubMedCrossRefGoogle Scholar
  77. Poppelreuther, M., Rudolph, B., Du, C., Grossmann, R., Becker, M., Thiele, C., Ehehalt, R., and Fullekrug, J. (2012). The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. J Lipid Res 53, 888–900.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pu, J., Ha, C.W., Zhang, S., Jung, J.P., Huh, W.K., and Liu, P. (2011). Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell 2, 487–496.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Qiu, B., Ackerman, D., Sanchez, D.J., Li, B., Ochocki, J.D., Grazioli, A., Bobrovnikova-Marjon, E., Diehl, J.A., Keith, B., and Simon, M.C. (2015). HIF2a-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer Discov 5, 652–667.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Rambold, A.S., Cohen, S., and Lippincott-Schwartz, J. (2015). Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 32, 678–692.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Robenek, H., Buers, I., Hofnagel, O., Robenek, M.J., Troyer, D., and Severs, N.J. (2009). Compartmentalization of proteins in lipid droplet biogenesis. Biochim Biophys Acta 1791, 408–418.PubMedCrossRefGoogle Scholar
  82. Romeo, S., Kozlitina, J., Xing, C., Pertsemlidis, A., Cox, D., Pennacchio, L.A., Boerwinkle, E., Cohen, J.C., and Hobbs, H.H. (2008). Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40, 1461–1465.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rubio-Cabezas, O., Puri, V., Murano, I., Saudek, V., Semple, R.K., Dash, S., Hyden, C.S.S., Bottomley, W., Vigouroux, C., Magré, J., Raymond-Barker, P., Murgatroyd, P.R., Chawla, A., Skepper, J.N., Chatterjee, V.K., Suliman, S., Patch, A.M., Agarwal, A.K., Garg, A., Barroso, I., Cinti, S., Czech, M.P., Argente, J., O’Rahilly, S., Savage, D.B., and Savage, D.B. (2009). Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med 1, 280–287.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rutkowski, J.M., Stern, J.H., and Scherer, P.E. (2015). The cell biology of fat expansion. J Cell Biol 208, 501–512.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Saka, H.A., and Valdivia, R. (2012). Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu Rev Cell Dev Biol 28, 411–437.PubMedCrossRefGoogle Scholar
  86. Schrader, M. (2001). Tubulo-reticular clusters of peroxisomes in living COS-7 cells: dynamic behavior and association with lipid droplets. J Histochem Cytochem 49, 1421–1429.PubMedCrossRefGoogle Scholar
  87. Schroeder, B., Schulze, R.J., Weller, S.G., Sletten, A.C., Casey, C.A., and McNiven, M.A. (2015). The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61, 1896–1907.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Schweiger, M., and Zechner, R. (2015). Breaking the barrier—chaperonemediated autophagy of perilipins regulates the lipolytic degradation of fat. Cell Metab 22, 60–61.PubMedCrossRefGoogle Scholar
  89. Sell, H., Habich, C., and Eckel, J. (2012). Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 8, 709–716.PubMedCrossRefGoogle Scholar
  90. Shastry, S., Delgado, M.R., Dirik, E., Turkmen, M., Agarwal, A.K., and Garg, A. (2010). Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. Am J Med Genet 152A, 2245–2253.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131–1135.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Smirnova, E., Goldberg, E.B., Makarova, K.S., Lin, L., Brown, W.J., and Jackson, C.L. (2006). ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep 7, 106–113.PubMedCrossRefGoogle Scholar
  93. Stone, S.J., Levin, M.C., Zhou, P., Han, J., Walther, T.C., and Farese, R.V. (2009). The endoplasmic reticulum enzyme DGAT2 is found in mitochondria- associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem 284, 5352–5361.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Strable, M.S., and Ntambi, J.M. (2010). Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol 45, 199–214.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Su, W., Wang, Y., Jia, X., Wu, W., Li, L., Tian, X., Li, S., Wang, C., Xu, H., Cao, J., Han, Q., Xu, S., Chen, Y., Zhong, Y., Zhang, X., Liu, P., Gustafßson, J.Å., and Guan, Y. (2014). Comparative proteomic study reveals 17ß-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA 111, 11437–11442.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sun, Z., Gong, J., Wu, H., Xu, W., Wu, L., Xu, D., Gao, J., Wu, J.W., Yang, H., Yang, M., and Li, P. (2013). Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 4, 1594.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Suzuki, M., Shinohara, Y., Ohsaki, Y., and Fujimoto, T. (2011). Lipid droplets: size matters. Microscopy 60, S101–S116.CrossRefGoogle Scholar
  98. Sztalryd, C., and Kimmel, A.R. (2014). Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie 96, 96–101.PubMedCrossRefGoogle Scholar
  99. Szymanski, K.M., Binns, D., Bartz, R., Grishin, N.V., Li, W.P., Agarwal, A.K., Garg, A., Anderson, R.G.W., and Goodman, J.M. (2007). The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA 104, 20890–20895.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Tansey, J.T., Sztalryd, C., Gruia-Gray, J., Roush, D.L., Zee, J.V., Gavrilova, O., Reitman, M.L., Deng, C.X., Li, C., Kimmel, A.R., and Londos, C. (2001). Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci USA 98, 6494–6499.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tauchi-Sato, K., Ozeki, S., Houjou, T., Taguchi, R., and Fujimoto, T. (2002). The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277, 44507–44512.PubMedCrossRefGoogle Scholar
  102. Tian, Y., Bi, J., Shui, G., Liu, Z., Xiang, Y., Liu, Y., Wenk, M.R., Yang, H., and Huang, X. (2011). Tissue-autonomous function of drosophila seipin in preventing ectopic lipid droplet formation. PLoS Genet 7, e1001364.CrossRefGoogle Scholar
  103. Toh, S.Y., Gong, J., Du, G., Li, J.Z., Yang, S., Ye, J., Yao, H., Zhang, Y., Xue, B., Li, Q., Yang, H., Wen, Z., and Li, P. (2008). Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of Fsp27 deficient mice. PLoS ONE 3, e2890.CrossRefGoogle Scholar
  104. Valdearcos, M., Esquinas, E., Meana, C., Gil-de-Gomez, L., Guijas, C., Balsinde, J., and Balboa, M.A. (2011). Subcellular localization and role of lipin-1 in human macrophages. J Immunol 186, 6004–6013.PubMedCrossRefGoogle Scholar
  105. Walther, T.C., and Farese, R.V. (2012). Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81, 687–714.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wan, H.C., Melo, R.C.N., Jin, Z., Dvorak, A.M., and Weller, P.F. (2007). Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB J 21, 167–178.PubMedCrossRefGoogle Scholar
  107. Wang, C.W. (2016). Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta 1861, 793–805.PubMedCrossRefGoogle Scholar
  108. Wang, H., Becuwe, M., Housden, B.E., Chitraju, C., Porras, A.J., Graham, M.M., Liu, X.N., Thiam, A.R., Savage, D.B., Agarwal, A.K., Garg, A., Olarte, M.J., Lin, Q., Fröhlich, F., Hannibal-Bach, H.K., Upadhyayula, S., Perrimon, N., Kirchhausen, T., Ejsing, C.S., Walther, T.C., and Farese, R.V. (2016). Seipin is required for converting nascent to mature lipid droplets. eLife 5, e16582.Google Scholar
  109. Wang, H., Hu, L., Dalen, K., Dorward, H., Marcinkiewicz, A., Russell, D., Gong, D., Londos, C., Yamaguchi, T., Holm, C., Rizzo, M.A., Brasaemle, D., and Sztalryd, C. (2009). Activation of hormone-sensitive lipase requires two steps, protein phosphorylation and binding to the PAT-1 domain of lipid droplet coat proteins. J Biol Chem 284, 32116–32125.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wang, H., Zhang, J., Qiu, W., Han, G.S., Carman, G.M., and Adeli, K. (2011). Lipin-1 isoform is a novel lipid droplet-associated protein highly expressed in the brain. FEBS Lett 585, 1979–1984.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wang, W., Lv, N., Zhang, S., Shui, G., Qian, H., Zhang, J., Chen, Y., Ye, J., Xie, Y., Shen, Y., Wenk, M.R., and Li, P. (2012). Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids. Nat Med 18, 235–243.PubMedCrossRefGoogle Scholar
  112. Watt, M.J., Holmes, A.G., Pinnamaneni, S.K., Garnham, A.P., Steinberg, G.R., Kemp, B.E., and Febbraio, M.A. (2006). Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. AJP-Endocrinol Metab 290, e500–E508.CrossRefGoogle Scholar
  113. Watt, M.J., and Steinberg, G.R. (2008). Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J 414, 313–325.PubMedCrossRefGoogle Scholar
  114. Welte, M.A. (2015). Expanding roles for lipid droplets. Curr Biol 25, R470–R481.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wilfling, F., Haas, J.T., Walther, T.C., and Farese, R.V. (2014). Lipid droplet biogenesis. Curr Opin Cell Biol 29, 39–45.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wilfling, F., Wang, H., Haas, J.T., Krahmer, N., Gould, T.J., Uchida, A., Cheng, J.X., Graham, M., Christiano, R., Fröhlich, F., Liu, X., Buhman, K.K., Coleman, R.A., Bewersdorf, J., Farese R.V., and Walther, T.C. (2013). Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ERto lipid droplets. Dev Cell 24, 384–399.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wolinski, H., Hofbauer, H.F., Hellauer, K., Cristobal-Sarramian, A., Kolb, D., Radulovic, M., Knittelfelder, O.L., Rechberger, G.N., and Kohlwein, S.D. (2015). Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast. Biochim Biophys Acta 1851, 1450–1464.PubMedCrossRefGoogle Scholar
  118. Wu, L., Xu, D., Zhou, L., Xie, B., Yu, L., Yang, H., Huang, L., Ye, J., Deng, H., Yuan, Y.A., Chen, S., and Li, P. (2014a). Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Dev Cell 30, 378–393.PubMedCrossRefGoogle Scholar
  119. Wu, L.Z., Zhou, L.K., Chen, C., Gong, J.Y., Xu, L., Ye, J., Li, D., and Li, P. (2014b). Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue. Sci China Life Sci 57, 107–116.PubMedCrossRefGoogle Scholar
  120. Xu, L., Zhou, L., and Li, P. (2012). CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol 32, 1094–1098.PubMedCrossRefGoogle Scholar
  121. Xu, W., Wu, L., Yu, M., Chen, F.J., Arshad, M., Xia, X., Ren, H., Yu, J., Xu, L., Xu, D., Li, J.Z., Li, P., and Zhou, L. (2016). Differential roles of cell death-inducing DNA fragmentation factor-a-like effector (CIDE) proteins in promoting lipid droplet fusion and growth in subpopulations of hepatocytes. J Biol Chem 291, 4282–4293.PubMedCrossRefGoogle Scholar
  122. Yamaguchi, T., Omatsu, N., Matsushita, S., and Osumi, T. (2004). CGI-58 interacts with perilipin and is localized to lipid droplets: possible involvement of CGI-58 mislocalization in chanarin-dorfman syndrome. J Biol Chem 279, 30490–30497.PubMedCrossRefGoogle Scholar
  123. Yang, X., Lu, X., Lombès, M., Rha, G.B., Chi, Y.I., Guerin, T.M., Smart, E.J., and Liu, J. (2010). The G0/G1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab 11, 194–205.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ye, J. (2013). Mechanisms of insulin resistance in obesity. Front Med 7, 14–24.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Yu, J., Zhang, S., Cui, L., Wang, W., Na, H., Zhu, X., Li, L., Xu, G., Yang, F., Christian, M., and Liu, P. (2015). Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochim Biophys Acta 1853, 918–928.PubMedCrossRefGoogle Scholar
  126. Zechner, R. (2015). FAT FLUX: enzymes, regulators, and pathophysiology of intracellular lipolysis. EMBO Mol Med 7, 359–362.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zechner, R., Kienesberger, P.C., Haemmerle, G., Zimmermann, R., and Lass, A. (2009). Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 50, 3–21.PubMedCrossRefGoogle Scholar
  128. Zechner, R., Zimmermann, R., Eichmann, T.O., Kohlwein, S.D., Haemmerle, G., Lass, A., and Madeo, F. (2012). FAT SIGNALS—lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15, 279–291.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zehmer, J.K., Huang, Y., Peng, G., Pu, J., Anderson, R.G.W., and Liu, P. (2009). A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9, 914–921.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zhang, S., Shui, G., Wang, G., Wang, C., Sun, S., Zouboulis, C.C., Xiao, R., Ye, J., Li, W., and Li, P. (2014). Cidea control of lipid storage and secretion in mouse and human sebaceous glands. Mol Cell Biol 34, 1827–1838.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zhou, Z., Yon Toh, S., Chen, Z., Guo, K., Peng Ng, C., Ponniah, S., Lin, S.C., Hong, W., and Li, P. (2003). Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet 35, 49–56.PubMedCrossRefGoogle Scholar
  132. Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., and Zechner, R. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386.PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Tsinghua-Peking Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina

Personalised recommendations