Advertisement

Science China Life Sciences

, Volume 60, Issue 4, pp 356–362 | Cite as

DNA methylation signatures in circulating cell-free DNA as biomarkers for the early detection of cancer

  • Junyun Wang
  • Xiao Han
  • Yingli SunEmail author
Review

Abstract

Detecting cell-free DNA (cfDNA) or circulating tumor DNA (ctDNA) in plasma or serum could serve as a “liquid biopsy”, which would be useful for numerous diagnostic applications. cfDNA methylation detection is one of the most promising approaches for cancer risk assessment. Here, we reviewed the literature related to the use of serum or plasma circulating cell-free DNA for cancer diagnosis in the early stage and their power as future biomarkers.

Keywords

circulating cell-free DNA DNA methylation diagnostic markers cancer detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Precision Medicine Research Program of the Chinese Academy of Sciences (KJZD-EW-L14), the National Basic Research Program (2012CB518302, 2013CB911001), the National Natural Science Foundation of China (31540033, 91019024), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA01040407).

References

  1. An, Q., Liu, Y., Gao, Y., Huang, J., Fong, X., Li, L., Zhang, D., and Cheng, S. (2002). Detection of p16 hypermethylation in circulating plasma DNA of non-small cell lung cancer patients. Cancer Lett 188, 109–114.CrossRefPubMedGoogle Scholar
  2. Bastian, P.J., Palapattu, G.S., Lin, X., Yegnasubramanian, S., Mangold, L.A., Trock, B., Eisenberger, M.A., Partin, A.W., and Nelson, W.G. (2005). Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res 11, 4037–4043.CrossRefPubMedGoogle Scholar
  3. Bastian, P.J., Palapattu, G.S., Yegnasubramanian, S., Rogers, C.G., Lin, X., Mangold, L.A., Trock, B., Eisenberger, M.A., Partin, A.W., and Nelson, W.G. (2008). CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer. J Urol 179, 529–534; discussion 534–525.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bearzatto, A., Conte, D., Frattini, M., Zaffaroni, N., Andriani, F., Balestra, D., Tavecchio, L., Daidone, M.G., and Sozzi, G. (2002). p16INK4A Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clin Cancer Res 8, 3782–3787.PubMedGoogle Scholar
  5. Bruegl, A., Djordjevic, B., Urbauer, D., Westin, S., Soliman, P., Lu, K., Luthra, R., and Broaddus, R. (2014). Utility of MLH1 methylation analysis in the clinical evaluation of lynch syndrome in women with endometrial cancer. Curr Pharm Des 20, 1655–1663.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bryzgunova, O.E., Morozkin, E.S., Yarmoschuk, S.V., Vlassov, V.V., and Laktionov, P.P. (2008). Methylation-specific sequencing of GSTP1 gene promoter in circulating/extracellular DNA from blood and urine of healthy donors and prostate cancer patients. Ann New York Acad Sci 1137, 222–225.CrossRefGoogle Scholar
  7. Chan, K.C.A., Lai, P.B.S., Mok, T.S.K., Chan, H.L.Y., Ding, C., Yeung, S.W., and Lo, Y.M.D. (2008). Quantitative analysis of circulating methylated DNA as a biomarker for hepatocellular carcinoma. Clin Chem 54, 1528–1536.CrossRefPubMedGoogle Scholar
  8. Chimonidou, M., Strati, A., Malamos, N., Georgoulias, V., and Lianidou, E. (2014). Abstract 4813: DNA methylation of tumor suppressor and metastasis suppressor genes in primary tumors, circulating tumor cells and cell free DNA in the same breast cancer patients. Cancer Res 74, 4813–4813.CrossRefGoogle Scholar
  9. Church, T.R., Wandell, M., Lofton-Day, C., Mongin, S.J., Burger, M., Payne, S.R., Castaños-Vélez, E., Blumenstein, B.A., Rö sch, T., Osborn, N., Snover, D., Day, R.W., Ransohoff, D.F., and Ransohoff, D.F. (2014). Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 63, 317–325.CrossRefPubMedGoogle Scholar
  10. Dawson, S.J., Tsui, D.W.Y., Murtaza, M., Biggs, H., Rueda, O.M., Chin, S.F., Dunning, M.J., Gale, D., Forshew, T., Mahler-Araujo, B., Rajan, S., Humphray, S., Becq, J., Halsall, D., Wallis, M., Bentley, D., Caldas, C., and Rosenfeld, N. (2013). Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368, 1199–1209.CrossRefPubMedGoogle Scholar
  11. deVos, T., Tetzner, R., Model, F., Weiss, G., Schuster, M., Distler, J., Steiger, K.V., Grutzmann, R., Pilarsky, C., Habermann, J.K., Fleshner, P.R., Oubre, B.M., Day, R., Sledziewski, A.Z., and Lofton-Day, C. (2009). Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 55, 1337–1346.CrossRefPubMedGoogle Scholar
  12. Duffy, M.J., Evoy, D., and McDermott, E.W. (2010). CA 15-3: uses and limitation as a biomarker for breast cancer. Clin Chim Acta 411, 1869–1874.CrossRefPubMedGoogle Scholar
  13. Feinberg, A. (2014). DNA methylation in cancer: three decades of discovery. Genome Med 6, 36.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fiegl, H., Millinger, S., Mueller-Holzner, E., Marth, C., Ensinger, C., Berger, A., Klocker, H., Goebel, G., and Widschwendter, M. (2005). Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res 65, 1141–1145.CrossRefPubMedGoogle Scholar
  15. Goessl, C., Muller, M., Heicappell, R., Krause, H., and Miller, K. (2001). DNA-based detection of prostate cancer in blood, urine, and ejaculates. Clin Chem 47, 364–364.Google Scholar
  16. Grützmann, R., Molnar, B., Pilarsky, C., Habermann, J.K., Schlag, P.M., Saeger, H.D., Miehlke, S., Stolz, T., Model, F., Roblick, U.J., Bruch, H.P., Koch, R., Liebenberg, V., Devos, T., Song, X., Day, R.H., Sledziewski, A.Z., and Lofton-Day, C. (2008). Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS ONE 3, e3759.CrossRefGoogle Scholar
  17. Hagood, J.S. (2014). Beyond the genome: epigenetic mechanisms in lung remodeling. Physiol 29, 177–185.CrossRefGoogle Scholar
  18. He, Q., Chen, H.Y., Bai, E.Q., Luo, Y.X., Fu, R.J., He, Y.S., Jiang, J., and Wang, H.Q. (2010). Development of a multiplex MethyLight assay for the detection of multigene methylation in human colorectal cancer. Cancer Genet Cytogenet 202, 1–10.CrossRefPubMedGoogle Scholar
  19. He, W.S., and Bishop, K.S. (2016). The potential use of cell-free-circulatingtumor DNA as a biomarker for prostate cancer. Expert Rev Mol Diagnost 16, 839–852.CrossRefGoogle Scholar
  20. Hernández, H.G., Tse, M.Y., Pang, S.C., Arboleda, H., and Forero, D.A. (2013). Optimizing methodologies for PCR-based DNA methylation analysis. Biotechniques 55, 181–197.CrossRefPubMedGoogle Scholar
  21. Hoque, M.O., Feng, Q., Toure, P., Dem, A., Critchlow, C.W., Hawes, S.E., Wood, T., Jeronimo, C., Rosenbaum, E., Stern, J., Yu, M., Trink, B., Kiviat, N.B., and Sidransky, D. (2006). Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J Clin Oncol 24, 4262–4269.CrossRefPubMedGoogle Scholar
  22. Ignatiadis, M., Lee, M., and Jeffrey, S.S. (2015). Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res 21, 4786–4800.CrossRefPubMedGoogle Scholar
  23. Ilse, P., Biesterfeld, S., Pomjanski, N., Wrobel, C., and Schramm, M. (2014). Analysis of SHOX2 methylation as an aid to cytology in lung cancer diagnosis. Cancer Genom Proteom 11, 251–258.Google Scholar
  24. Imperiale, T.F., Ransohoff, D.F., Itzkowitz, S.H., Levin, T.R., Lavin, P., Lidgard, G.P., Ahlquist, D.A., and Berger, B.M. (2014). Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med 370, 1287–1297.CrossRefPubMedGoogle Scholar
  25. Jernimo, C., Usadel, H., Henrique, R., Silva, C., Oliveira, J., Lopes, C., and Sidransky, D. (2002). Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology 60, 1131–1135.CrossRefGoogle Scholar
  26. Kabesch, M., and Adcock, I.M. (2012). Epigenetics in asthma and COPD. Biochimie 94, 2231–2241.CrossRefPubMedGoogle Scholar
  27. Karampini, E., and McCaughan, F. (2016). Circulating DNA in solid organ cancers—analysis and clinical application. QJM 109, 223–227.CrossRefPubMedGoogle Scholar
  28. Kurdyukov, S., and Bullock, M. (2016). DNA methylation analysis: choosing the right method. Biology 5, 3.CrossRefPubMedCentralGoogle Scholar
  29. Laird, P.W. (2003). Early detection: the power and the promise of DNA methylation markers. Nat Rev Cancer 3, 253–266.CrossRefPubMedGoogle Scholar
  30. Laird, P.W. (2010). Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11, 191–203.CrossRefPubMedGoogle Scholar
  31. Lecomte, T., Berger, A., Zinzindohoué, F., Micard, S., Landi, B., Blons, H., Beaune, P., Cugnenc, P.H., and Laurent-Puig, P. (2002). Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer 100, 542–548.CrossRefPubMedGoogle Scholar
  32. Liggett, T., Melnikov, A., Yi, Q.L., Replogle, C., Brand, R., Kaul, K., Talamonti, M., Abrams, R.A., and Levenson, V. (2010). Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer 116, 1674–1680.CrossRefPubMedGoogle Scholar
  33. Liu, Y., An, Q., Li, L., Zhang, D., Huang, J., Feng, X., Cheng, S., and Gao, Y. (2003). Hypermethylation of p16INK4a in Chinese lung cancer patients: biological and clinical implications. Carcinogenesis 24, 1897–1901.CrossRefPubMedGoogle Scholar
  34. Ma, M., Zhu, H., Zhang, C., Sun, X., Gao, X., and Chen, G. (2015). “Liquid biopsy”-ctDNA detection with great potential and challenges. Ann Transl Med 3, 235.PubMedPubMedCentralGoogle Scholar
  35. Mack, S.C., Witt, H., Piro, R.M., Gu, L., Zuyderduyn, S., Stütz, A.M., Wang, X., Gallo, M., Garzia, L., Zayne, K., Zhang, X., Ramaswamy, V., Jäger, N., Jones, D.T.W., Sill, M., Pugh, T.J., Ryzhova, M., Wani, K.M., Shih, D.J.H., Head, R., Remke, M., Bailey, S.D., Zichner, T., Faria, C.C., Barszczyk, M., Stark, S., Seker-Cin, H., Hutter, S., Johann, P., Bender, S., Hovestadt, V., Tzaridis, T., Dubuc, A.M., Northcott, P.A., Peacock, J., Bertrand, K.C., Agnihotri, S., Cavalli, F.M.G., Clarke, I., Nethery-Brokx, K., Creasy, C.L., Verma, S.K., Koster, J., Wu, X., Yao, Y., Milde, T., Sin-Chan, P., Zuccaro, J., Lau, L., Pereira, S., Castelo-Branco, P., Hirst, M., Marra, M.A., Roberts, S.S., Fults, D., Massimi, L., Cho, Y.J., Van Meter, T., Grajkowska, W., Lach, B., Kulozik, A.E., von Deimling, A., Witt, O., Scherer, S.W., Fan, X., Muraszko, K.M., Kool, M., Pomeroy, S.L., Gupta, N., Phillips, J., Huang, A., Tabori, U., Hawkins, C., Malkin, D., Kongkham, P.N., Weiss, W.A., Jabado, N., Rutka, J.T., Bouffet, E., Korbel, J.O., Lupien, M., Aldape, K.D., Bader, G.D., Eils, R., Lichter, P., Dirks, P.B., Pfister, S.M., Korshunov, A., and Taylor, M.D. (2014). Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506, 445–450.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Melnikov, A., Scholtens, D., Godwin, A., and Levenson, V. (2009a). Differential methylation profile of ovarian cancer in tissues and plasma. J Mol Diagnost 11, 60–65.CrossRefGoogle Scholar
  37. Melnikov, A.A., Scholtens, D., Talamonti, M.S., Bentrem, D.J., and Levenson, V.V. (2009b). Methylation profile of circulating plasma DNA in patients with pancreatic cancer. J Surg Oncol 99, 119–122.CrossRefPubMedGoogle Scholar
  38. Müller, H.M., Millinger, S., Fiegl, H., Goebel, G., Ivarsson, L., Widschwendter, A., Müller-Holzner, E., Marth, C., and Widschwendter, M. (2004). Analysis of methylated genes in peritoneal fluids of ovarian cancer patients: a new prognostic tool. Clin Chem 50, 2171–2173.CrossRefPubMedGoogle Scholar
  39. Ng, C.S.H., Zhang, J., Wan, S., Lee, T.W., Arifi, A.A., Mok, T., Lo, D.Y.M., and Yim, A.P.C. (2002). Tumorp16M is a possible marker of advanced stage in non-small cell lung cancer. J Surg Oncol 79, 101–106.CrossRefPubMedGoogle Scholar
  40. Pan, H., Chen, L., Dogra, S., Ling Teh, A., Hao Tan, J., Lim, Y.I., Lim, Y.C., Jin, S., Lee, Y.K., Ng, P.Y., Ong, M.L., Barton, S., Chong, Y.S., Meaney, M.J., Gluckman, P.D., Stunkel, W., Ding, C., and Holbrook, J. (2012). Measuring the methylome in clinical samples: improved processing of the Infinium Human Methylation450 BeadChip Array. Epigenetics 7, 1173–1187.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pérez-Carbonell, L., Alenda, C., Payá, A., Castillejo, A., Barberá, V.M., Guillén, C., Rojas, E., Acame, N., Gutiérrez-Aviñó, F.J., Castells, A., Llor, X., Andreu, M., Soto, J.L., and Jover, R. (2010). Methylation analysis of MLH1 improves the selection of patients for genetic testing in lynch syndrome. J Mol Diagnost 12, 498–504.CrossRefGoogle Scholar
  42. Pixberg, C.F., Schulz, W.A., Stoecklein, N.H., and Neves, R.P.L. (2015). Characterization of DNA methylation in circulating tumor cells. Genes 6, 1053–1075.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Powrózek, T., Krawczyk, P., Kucharczyk, T., and Milanowski, J. (2014). Septin 9 promoter region methylation in free circulating DNA—potential role in noninvasive diagnosis of lung cancer: preliminary report. Med Oncol 31, 917.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ramirez, J.L., Rosell, R., Taron, M., Sanchez-Ronco, M., Alberola, V., de Las Peñas, R., Sanchez, J.M., Moran, T., Camps, C., Massuti, B., Sanchez, J.J., Salazar, F., Catot, S., and Catot, S. (2005). 14-3-3sigma methylation in pretreatment serum circulating DNA of cisplatin-plus-gemcitabine-treated advanced non-small-cell lung cancer patients predicts survival: The Spanish Lung Cancer Group. J Clin Oncol 23, 9105–9112.CrossRefPubMedGoogle Scholar
  45. Ren, C.C., Miao, X.H., Yang, B., Zhao, L., Sun, R., and Song, W.Q. (2006). Methylation status of the fragile histidine triad and E-cadherin genes in plasma of cervical cancer patients. Int J Gynecol Cancer 16, 1862–1867.CrossRefPubMedGoogle Scholar
  46. Rogers, C.G., Gonzalgo, M.L., Yan, G., Bastian, P.J., Chan, D.Y., Nelson, W.G., and Pavlovich, C.P. (2006). High concordance of gene methylation in post-digital rectal examination and post-biopsy urine samples for prostate cancer detection. J Urol 176, 2280–2284.CrossRefPubMedGoogle Scholar
  47. Rouprêt, M., Hupertan, V., Catto, J.W.F., Yates, D.R., Rehman, I., Proctor, L.M., Phillips, J., Meuth, M., Cussenot, O., and Hamdy, F.C. (2008). Promoter hypermethylation in circulating blood cells identifies prostate cancer progression. Int J Cancer 122, 952–956.CrossRefPubMedGoogle Scholar
  48. Rykova, E.Y., Laktionov, P.P., Skvortsova, T.E., Starikov, A.V., Kuznetsova, N.P., and Vlassov, V.V. (2004). Extracellular DNA in breast cancer: cell-surface-bound, tumor-derived extracellular DNA in blood of patients with breast cancer and nonmalignant tumors. Ann New York Acad Sci 1022, 217–220.CrossRefGoogle Scholar
  49. Schwarzenbach, H., Hoon, D.S.B., and Pantel, K. (2011). Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11, 426–437.CrossRefPubMedGoogle Scholar
  50. Sharma, G., Mirza, S., Parshad, R., Srivastava, A., Datta Gupta, S., Pandya, P., and Ralhan, R. (2010a). CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients. Clin Biochem 43, 373–379.CrossRefPubMedGoogle Scholar
  51. Sharma, G., Mirza, S., Parshad, R., Srivastava, A., Gupta, S.D., Pandya, P., and Ralhan, R. (2010b). Clinical significance of promoter hypermethylation of DNA repair genes in tumor and serum DNA in invasive ductal breast carcinoma patients. Life Sci 87, 83–91.CrossRefPubMedGoogle Scholar
  52. Shivapurkar, N., and Gazdar, A. (2010). DNA methylation based biomarkers in non-invasive cancer screening. Curr Mol Med 10, 123–132.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Silva, J.M., Dominguez, G., Villanueva, M.J., Gonzalez, R., Garcia, J.M., Corbacho, C., Provencio, M., España, P., and Bonilla, F. (1999). Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br J Cancer 80, 1262–1264.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sun, K., Jiang, P., Chan, K.C.A., Wong, J., Cheng, Y.K.Y., Liang, R.H.S., Chan, W., Ma, E.S.K., Chan, S.L., Cheng, S.H., Chan, R.W.Y., Tong, Y.K., Ng, S.S.M., Wong, R.S.M., Hui, D.S.C., Ngong Leung, T., Leung, T.Y., Lai, P.B.S., Chiu, R.W.K., and Lo, Y.M.D. (2015). Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci USA 112, E5503–E5512.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sunami, E., Shinozaki, M., Higano, C.S., Wollman, R., Dorff, T.B., Tucker, S.J., Martinez, S.R., Singer, F.R., and Hoon, D.S.B. (2009). Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin Chem 55, 559–567.CrossRefPubMedGoogle Scholar
  56. Swaminathan, R., and Butt, A.N. (2006). Circulating nucleic acids in plasma and serum: recent developments. Ann New York Acad Sci 1075, 1–9.CrossRefGoogle Scholar
  57. Tänzer, M., Balluff, B., Distler, J., Hale, K., Leodolter, A., Röcken, C., Molnar, B., Schmid, R., Lofton-Day, C., Schuster, T., and Ebert, M.P.A. (2010). Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS ONE 5, e9061.CrossRefGoogle Scholar
  58. Timp, W., Bravo, H.C., McDonald, O.G., Goggins, M., Umbricht, C., Zeiger, M., Feinberg, A.P., and Irizarry, R.A. (2014). Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors. Genome Med 6, 61.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Valenzuela, M., Galisteo, R., Zuluaga, A., Villalobos, M., Núñez, M.I., Oliver, F.J., and VRuiz de Almodóvar, J.M. (2002). Assessing the use of p16INK4a promoter gene methylation in serum for detection of bladder cancer. Eur Urol 42, 622–630.CrossRefPubMedGoogle Scholar
  60. Wang, J., Qin, Y., Li, B., Sun, Z., and Yang, B. (2006). Detection of aberrant promoter methylation of GSTP1 in the tumor and serum of Chinese human primary hepatocellular carcinoma patients. Clin Biochem 39, 344–348.CrossRefPubMedGoogle Scholar
  61. Warton, K., Mahon, K.L., and Samimi, G. (2016). Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr Relat Cancer 23, R157–R171.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wielscher, M., Vierlinger, K., Kegler, U., Ziesche, R., Gsur, A., and Weinhäusel, A. (2015). Diagnostic performance of plasma DNA methylation profiles in lung cancer, pulmonary fibrosis and COPD. EBioMedicine 2, 929–936.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wong, I.H.N., Lo, Y.M.D., Yeo, W., Lau, W.Y., and Johnson, P.J. (2000). Frequent p15 promoter methylation in tumor and peripheral blood from hepatocellular carcinoma patients. Clin Cancer Res 6, 3516–3521.PubMedGoogle Scholar
  64. Yazici, H., Terry, M.B., Cho, Y.H., Senie, R.T., Liao, Y., Andrulis, I., and Santella, R.M. (2009). Aberrant methylation of RASSF1A in plasma DNA before breast cancer diagnosis in the breast cancer family registry. Cancer Epidemiol Biomarkers Prev 18, 2723–2725.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2017

Authors and Affiliations

  1. 1.Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations