Advertisement

Science China Life Sciences

, Volume 59, Issue 12, pp 1305–1312 | Cite as

Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation

  • Dongdong Ti
  • Haojie Hao
  • Xiaobing Fu
  • Weidong Han
Open Access
Review

Abstract

Clinical and experimental studies have highlighted the significance of inflammation in coordinating wound repair and regeneration. However, it remains challenging to control the inflammatory response and tolerance at systemic levels without causing toxicity to injured tissues. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties and facilitate tissue repair by releasing exosomes, which generate a suitable microenvironment for inflammatory resolution. Exosomes contain several effective bioactive molecules and act as a cell-cell communication vehicle to influence cellular activities in recipient cells. During this process, the horizontal transfer of exosomal microRNAs (miRNAs) to acceptor cells, where they regulate target gene expression, is of particular interest for understanding the basic biology of inflammation ablation, tissue homeostasis, and development of therapeutic approaches. In this review, we describe a signature of three specific miRNAs (miR-21, miR-146a, and miR-181) present in human umbilical cord MSC-derived exosomes (MSC-EXO) identified microarray chip analysis and focus on the inflammatory regulatory functions of these immune-related miRNAs. We also discuss the potential mechanisms contributing to the resolution of wound inflammation and tissue healing.

Keywords

microRNA inflammation mesenchymal stem cell exosome 

Notes

Acknowledgements

This work was supported by the National Basic Science and Development Program (2012CB518103, 2012CB518105), National High Technology Research and Development Program of China (2013AA020105, 2012AA020502), and National Natural Science Foundation of China (81121004, 81501682, 81230041).

References

  1. Aktas, E., Chamberlain, C.S., Saether, E.E., Duenwald-Kuehl, S.E., Kondratko-Mittnacht, J., Stitgen, M., Lee, J.S., Clements, A.E., Murphy, W.L., and Vanderby, R. (2016). Immune modulation with primed mesenchymal stem cells delivered via biodegradable scaffold to repair an Achilles tendon segmental defect. J Orthop Res doi: 10.1002/jor.23258.Google Scholar
  2. Alexander, M., Hu, R., Runtsch, M.C., Kagele, D.A., Mosbruger, T.L., Tolmachova, T., Seabra, M.C., Round, J.L., Ward, D.M., and O’Connell, R.M. (2015). Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 6, 7321.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Basso, M., and Bonetto, V. (2016). Extracellular vesicles and a novel form of communication in the brain. Front Neurosci 10, 127.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beaulieu, A.M., Bezman, N.A., Lee, J.E., Matloubian, M., Sun, J.C., and Lanier, L.L. (2013). MicroRNA function in NK-cell biology. Immunol Rev 253, 40–52.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blazquez, R., Sanchez-Margallo, F.M., de la Rosa, O., Dalemans, W., Alvarez, V., Tarazona, R., and Casado, J.G. (2014). Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol 5, 556.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bury, M.I., Fuller, N.J., Wethekam, L., and Sharma, A.K. (2015). Bone marrow derived cells facilitate urinary bladder regeneration by attenuating tissue inflammatory responses. Cent European J Urol 68, 115–120.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cavalieri, D., Rizzetto, L., Tocci, N., Rivero, D., Asquini, E., Si-Ammour, A., Bonechi, E., Ballerini, C., and Viola, R. (2016). Plant microRNAs as novel immunomodulatory agents. Sci Rep 6, 25761.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen, C.Z., Li, L., Lodish, H.F., and Bartel, D.P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86.CrossRefPubMedGoogle Scholar
  9. Dai, R., and Ahmed, S.A. (2011). MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 157, 163–179.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dan, C., Jinjun, B., Zi-Chun, H., Lin, M., Wei, C., Xu, Z., Ri, Z., Shun, C., Wen-Zhu, S., Qing-Cai, J., and Wu, Y. (2014). Modulation of TNF-a mRNA stability by human antigen R and miR181s in sepsis-induced immunoparalysis. EMBO Mol Med 7, 140–157.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Das, A., Ganesh, K., Khanna, S., Sen, C.K., and Roy, S. (2014). Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol 192, 1120–1129.CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Miguel, M., Fuentes-Julian, S., Blazquez-Martinez, A., Y.Pascual, C., A.Aller, M., Arias, J., and Arnalich-Montiel, F. (2012). Immunosuppressive properties of mesenchymal stem cells: advances and applications. CMM 12, 574–591.CrossRefGoogle Scholar
  13. Dong, L., Hao, H.J., Han, W.D., and Fu, X.B. (2015). The role of the microenvironment on the fate of adult stem cells. Sci China Life Sci 58, 639–648.CrossRefPubMedGoogle Scholar
  14. Dong, L., Wang, X., Tan, J., Li, H., Qian, W., Chen, J., Chen, Q., Wang, J., Xu, W., Tao, C., and Wang, S. (2014). Decreased expression of microRNA-21 correlates with the imbalance of Th17 and Treg cells in patients with rheumatoid arthritis. J Cell Mol Med 18, 2213–2224.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Etzrodt, M., Cortez-Retamozo, V., Newton, A., Zhao, J., Ng, A., Wildgruber, M., Romero, P., Wurdinger, T., Xavier, R., Geissmann, F., Meylan, E., Nahrendorf, M., Swirski, F.K., Baltimore, D., Weissleder, R., and Pittet, M.J. (2012). Regulation of monocyte functional heterogeneity by miR- 146a and Relb. Cell Rep 1, 317–324.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fang, S., Xu, C., Zhang, Y., Xue, C., Yang, C., Bi, H., Qian, X., Wu, M., Ji, K., Zhao, Y., Wang, Y., Liu, H., and Xing, X. (2016). Umbilical cord-derived mesenchymal stem cell-derived exosomal micrornas suppreßs myofibroblast differentiation by inhibiting the transforming growth factor-ß/SMAD2 pathway during wound healing. Stem Cells Transl Med 5, 1425–1439.CrossRefPubMedGoogle Scholar
  17. Feng, J., Li, A., Deng, J., Yang, Y., Dang, L., Ye, Y., Li, Y., and Zhang, W. (2014). miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease. Lipids Health Dis 13, 27.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fielding, C.A., Jones, G.W., McLoughlin, R.M., McLeod, L., Hammond, V.J., Uceda, J., Williams, A.S., Lambie, M., Foster, T.L., Liao, C.T., Rice, C.M., Greenhill, C.J., Colmont, C.S., Hams, E., Coles, B., Kift-Morgan, A., Newton, Z., Craig, K.J., Williams, J.D., Williams, G.T., Davies, S.J., Humphreys, I.R., O’Donnell, V.B., Taylor, P.R., Jenkins, B.J., Topley, N., and Jones, S.A. (2014). Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 40, 40–50.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fontaine, M.J., Shih, H., Schä fer, R., and Pittenger, M.F. (2016). Unraveling the mesenchymal stromal cells’ paracrine immunomodulatory effects. Transfus Med Rev 30, 37–43.CrossRefPubMedGoogle Scholar
  20. Galicia, J.C., Naqvi, A.R., Ko, C.C., Nares, S., and Khan, A.A. (2014). MiRNA-181a regulates Toll-like receptor agonist-induced inflammatory response in human fibroblasts. Genes Immun 15, 333–337.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gao, F., Chiu, S.M., Motan, D.A.L., Zhang, Z., Chen, L., Ji, H.L., Tse, H.F., Fu, Q.L., and Lian, Q. (2016). Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 7, e2062.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Garo, L.P., and Murugaiyan, G. (2016). Contribution of microRNAs to autoimmune diseases. Cell Mol Life Sci 73, 2041–2051.CrossRefPubMedGoogle Scholar
  23. Helley, M.P., Abate, W., Jackson, S.K., Bennett, J.H., and Thompson, S.W.N. (2015). The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons. Neuroscience 310, 686–698.CrossRefPubMedGoogle Scholar
  24. Henao-Mejia, J., Williams, A., Goff, L.A., Staron, M., Licona-Limón, P., Kaech, S.M., Nakayama, M., Rinn, J.L., and Flavell, R.A. (2013). The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity 38, 984–997.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hirano, T. (2010). Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir. Proc Jpn Acad Ser B 86, 717–730.CrossRefGoogle Scholar
  26. Hutchison, E.R., Kawamoto, E.M., Taub, D.D., Lal, A., Abdelmohsen, K., Zhang, Y., Wood Iii, W.H., Lehrmann, E., Camandola, S., Becker, K.G., Gorospe, M., and Mattson, M.P. (2013). Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 61, 1018–1028.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Iliopoulos, D., Jaeger, S.A., Hirsch, H.A., Bulyk, M.L., and Struhl, K. (2010). STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39, 493–506.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kalla, R., Ventham, N.T., Kennedy, N.A., Quintana, J.F., Nimmo, E.R., Buck, A.H., and Satsangi, J. (2015). MicroRNAs: new players in IBD. Gut 64, 504–513.CrossRefPubMedGoogle Scholar
  29. Ke, F., Zhang, L., Liu, Z., Yan, S., Xu, Z., Bai, J., Zhu, H., Lou, F., Cai, W., Sun, Y., Gao, Y., Wang, H., and Wang, H. (2016). Soluble tumor necrosis factor receptor 1 released by skin-derived mesenchymal stem cells is critical for inhibiting Th17 cell differentiation. Stem Cells Transl Med 5, 301–313.CrossRefPubMedGoogle Scholar
  30. Kizil, C., Kyritsis, N., and Brand, M. (2015). Effects of inflammation on stem cells: together they strive? EMBO Rep 16, 416–426.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Landén, N.X., Li, D., and Ståhle, M. (2016). Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 73, 3861–3885.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liu, G.Y., Liu, Y., Lu, Y., Qin, Y.R., Di, G.H., Lei, Y.H., Liu, H.X., Li, Y.Q., Wu, C., Hu, X.W., and Duan, H.F. (2016). Short-term memory of danger signals or environmental stimuli in mesenchymal stem cells: implications for therapeutic potential. Cell Mol Immunol 13, 369–378.CrossRefPubMedGoogle Scholar
  33. Liu, J., Han, Z., Han, Z., and He, Z. (2015). Mesenchymal stem cell-conditioned media suppresses inflammation-associated overproliferation of pulmonary artery smooth muscle cells in a rat model of pulmonary hypertension. Exp Ther Med 11, 467–475.PubMedPubMedCentralGoogle Scholar
  34. Mehta, A., and Baltimore, D. (2016). MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 16, 279–294.CrossRefPubMedGoogle Scholar
  35. Meisgen, F., Xu Landén, N., Wang, A., Réthi, B., Bouez, C., Zuccolo, M., Gueniche, A., Ståhle, M., Sonkoly, E., Breton, L., and Pivarcsi, A. (2014). MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. J Invest Dermatol 134, 1931–1940.CrossRefPubMedGoogle Scholar
  36. Montecalvo, A., Larregina, A.T., Shufesky, W.J., Beer Stolz, D., Sullivan, M.L.G., Karlsson, J.M., Baty, C.J., Gibson, G.A., Erdos, G., Wang, Z., Milosevic, J., Tkacheva, O.A., Divito, S.J., Jordan, R., Lyons-Weiler, J., Watkins, S.C., and Morelli, A.E. (2012). Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119, 756–766.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nakano, M., Nagaishi, K., Konari, N., Saito, Y., Chikenji, T., Mizue, Y., and Fujimiya, M. (2016). Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Sci Rep 6, 24805.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Navakanitworakul, R., Hung, W.T., Gunewardena, S., Davis, J.S., Chotigeat, W., and Christenson, L.K. (2016). Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci Rep 6, 25486.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nie, Y., Han, B.M., Liu, X.B., Yang, J.J., Wang, F., Cong, X.F., and Chen, X. (2011). Identification of MicroRNAs involved in hypoxia- and serum deprivation-induced apoptosis in mesenchymal stem cells. Int J Biol Sci 7, 762–768.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ophelders, D.R.M.G., Wolfs, T.G.A.M., Jellema, R.K., Zwanenburg, A., Andriessen, P., Delhaas, T., Ludwig, A.K., Radtke, S., Peters, V., Janssen, L., Giebel, B., and Kramer, B.W. (2016). Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med 5, 754–763.CrossRefPubMedGoogle Scholar
  41. Perdiguero, E., Sousa-Victor, P., Ruiz-Bonilla, V., Jardí, M., Caelles, C., Serrano, A.L., and Muñoz-Cánoves, P. (2011). p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. J Cell Biol 195, 307–322.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pieters, B.C.H., Arntz, O.J., Bennink, M.B., Broeren, M.G.A., van Caam, A.P.M., Koenders, M.I., van Lent, P.L.E.M., van den Berg, W.B., de Vries, M., van der Kraan, P.M., and van de Loo, F.A.J. (2015). Commercial cow milk contains physically stable extracellular vesicles expreßsing immunoregulatory TGF-ß. PLoS ONE 10, e0121123.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Saba, R., Sorensen, D.L., and Booth, S.A. (2014). MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front Immunol 5, 578.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sabouri, A.H., Marcondes, M.C.G., Flynn, C., Berger, M., Xiao, N., Fox, H.S., and Sarvetnick, N.E. (2014). TLR signaling controls lethal encephalitis in WNV-infected brain. Brain Res 1574, 84–95.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sheedy, F.J., Palsson-McDermott, E., Hennessy, E.J., Martin, C., O’Leary, J.J., Ruan, Q., Johnson, D.S., Chen, Y., and O’Neill, L.A.J. (2010). Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11, 141–147.CrossRefPubMedGoogle Scholar
  46. Shen, Q., Zhang, L., Chai, B.F., and Ma, X. (2015). Isolation and characterization of mesenchymal stem-like cells from human nucleus pulposus tissue. Sci China Life Sci 58, 509–511.CrossRefPubMedGoogle Scholar
  47. Shimbo, K., Miyaki, S., Ishitobi, H., Kato, Y., Kubo, T., Shimose, S., and Ochi, M. (2014). Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun 445, 381–387.CrossRefPubMedGoogle Scholar
  48. Sugimoto, M.A., Sousa, L.P., Pinho, V., Perretti, M., and Teixeira, M.M. (2016). Resolution of inflammation: what controls its onset? Front Immunol 7, 160.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sun, X., Sit, A., and Feinberg, M.W. (2014). Role of miR-181 family in regulating vascular inflammation and immunity. Trends Cardiovasc Med 24, 105–112.CrossRefPubMedGoogle Scholar
  50. Taverna, S., Fontana, S., Monteleone, F., Pucci, M., Saieva, L., De Caro, V., Cardinale, V.G., Giallombardo, M., Vicario, E., Rolfo, C., Leo, G.D., and Alessandro, R. (2016). Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype, via exosomal miR-21. Oncotarget 24, 30420.Google Scholar
  51. Teng, X., Chen, L., Chen, W., Yang, J., Yang, Z., and Shen, Z. (2015). Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem 37, 2415–2424.CrossRefPubMedGoogle Scholar
  52. Ti, D., Hao, H., Tong, C., Liu, J., Dong, L., Zheng, J., Zhao, Y., Liu, H., Fu, X., and Han, W. (2015). LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 13, 308.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Trams, E.G., Lauter, C.J., Norman Salem, J., and Heine, U. (1981). Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645, 63–70.CrossRefPubMedGoogle Scholar
  54. van den Akker, F., de Jager, S.C.A., and Sluijter, J.P.G. (2013). Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of Toll-like receptors. Mediators Inflamm 2013, 1–13.CrossRefGoogle Scholar
  55. Xu, J., Wu, W., Zhang, L., Dorset-Martin, W., Morris, M.W., Mitchell, M.E., and Liechty, K.W. (2012). The role of microRNA-146a in the pathogenesis of the diabetic wound-healing impairment: correction with mesenchymal stem cell treatment. Diabetes 61, 2906–2912.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Xue, X., Xia, W., and Wenzhong, H. (2013). A modeled dynamic regulatory network of NF-kB and IL-6 mediated by miRNA. Biosystems 114, 214–218.CrossRefPubMedGoogle Scholar
  57. Zhang, W., Shen, X., Xie, L., Chu, M., and Ma, Y. (2015). MicroRNA-181b regulates endotoxin tolerance by targeting IL-6 in macrophage RAW264.7 cells. J Inflamm 12, 18.CrossRefGoogle Scholar
  58. Zhang, Y., Lei, W., Yan, W., Li, X., Wang, X., Zhao, Z., Hui, J., Shen, Z., and Yang, J. (2016). microRNA-206 is involved in survival of hypoxia preconditioned mesenchymal stem cells through targeting Pim-1 kinase. Stem Cell Res Ther 7, 61.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhao, J.L., Rao, D.S., O’Connell, R.M., Garcia-Flores, Y., and Baltimore, D. (2013). MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. eLife 2, e00537.PubMedPubMedCentralGoogle Scholar
  60. Zhou, Y., Zhou, G., Tian, C., Jiang, W., Jin, L., Zhang, C., and Chen, X. (2016). Exosome-mediated small RNA delivery for gene therapy. WIREs RNA 7, 758–771.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institute of Basic Medicine, College of Life SciencesChinese PLA General HospitalBeijingChina

Personalised recommendations