Advertisement

Science China Life Sciences

, Volume 59, Issue 9, pp 867–877 | Cite as

RLKs orchestrate the signaling in plant male-female interaction

  • Hongju LiEmail author
  • Wei-Cai YangEmail author
Open Access
Review

Abstract

Different from animals, sessile plants are equipped with a large receptor-like kinase (RLK) superfamily. RLKs are a family of single trans-membrane proteins with divergent N-terminal extracellular domains capped by a signal peptide and C-terminal intracellular kinase. Researches in the last two decades have uncovered an increasing number of RLKs that regulate plant development, stress response and sexual reproduction, highlighting a dominant role of RLK signaling in cell-to-cell communications. Sexual reproduction in flowering plants is featured by interactions between the male gametophyte and the female tissues to facilitate sperm delivery and fertilization. Emerging evidences suggest that RLKs regulate almost every aspect of plant reproductive process, especially during pollination. Therefore, in this review we will focus mainly on the function and signaling of RLKs in plant male-female interaction and discuss the future prospects on these topics.

Keywords

RLK signaling plant reproduction pollen tube female gametophyte male-female interaction pollen tube growth and guidance pollen tube reception 

References

  1. Bai, Y., Pavan, S., Zheng, Z., Zappel, N.F., Reinstadler, A., Lotti, C., De Giovanni, C., Ricciardi, L., Lindhout, P., Visser, R., Theres, K., and Panstruga, R. (2008). Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of mlo function. Mol Plant Microbe Interact 21, 30–39.CrossRefPubMedGoogle Scholar
  2. Boavida, L.C., Borges, F., Becker, J.D., and Feijo, J.A. (2011). Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis. Plant Physiol 155, 2066–2080.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boisson-Dernier, A., Kessler, S.A., and Grossniklaus, U. (2011). The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals. J Exp Bot 62, 1581–1591.CrossRefPubMedGoogle Scholar
  4. Boisson-Dernier, A., Franck, C.M., Lituiev, D.S., and Grossniklaus, U. (2015). Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. Proc Natl Acad Sci USA 112, 12211–12216.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boisson-Dernier, A., Lituiev, D.S., Nestorova, A., Franck, C.M., Thirugnanarajah, S., and Grossniklaus, U. (2013). ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biol 11, e1001719.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boisson-Dernier, A., Roy, S., Kritsas, K., Grobei, M.A., Jaciubek, M., Schroeder, J.I., and Grossniklaus, U. (2009). Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136, 3279–3288.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chae, K., and Lord, E.M. (2011). Pollen tube growth and guidance: roles of small, secreted proteins. Ann Bot 108, 627–636.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chang, F., Gu, Y., Ma, H., and Yang, Z. (2012). AtPRK2 promotes ROP1 activation via RopGEFs in the control of polarized pollen tube growth. Mol Plant 6, 1187–1201.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cheung, A.Y., and Wu, H.M. (2011). THESEUS 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases? Curr Opin Plant Biol 14, 632–641.Google Scholar
  10. Cheung, A.Y., and Wu, H.M. (2016). Plant biology: LURE is bait for multiple receptors. Nature 531, 178–180.CrossRefPubMedGoogle Scholar
  11. Consonni, C., Humphry, M.E., Hartmann, H.A., Livaja, M., Durner, J., Westphal, L., Vogel, J., Lipka, V., Kemmerling, B., Schulze-Lefert, P., Somerville, S.C., and Panstruga, R. (2006). Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 38, 716–720.CrossRefPubMedGoogle Scholar
  12. Covey, P.A., Subbaiah, C.C., Parsons, R.L., Pearce, G., Lay, F.T., Anderson, M.A., Ryan, C.A., and Bedinger, P.A. (2010). A pollen-specific RALF from tomato that regulates pollen tube elongation. Plant Physiol 153, 703–715.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dai, X.R., Gao, X.Q., Chen, G.H., Tang, L.L., Wang, H., and Zhang, X.S. (2014). ABNORMAL POLLEN TUBE GUIDANCE1, an endoplasmic reticulum-localized mannosyltransferase homolog of GLYCOSYLPHOSPHATIDYLINOSITOL10 in yeast and PHOSPHATIDYLINOSITOL GLYCAN ANCHOR BIOSYNTHESIS B in human, is required for Arabidopsis pollen tube micropylar guidance and embryo development. Plant Physiol 165, 1544–1556.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Duan, Q., Kita, D., Li, C., Cheung, A.Y., and Wu, H.M. (2010). FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107, 17821–17826.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Duan, Q., Kita, D., Johnson, E.A., Aggarwal, M., Gates, L., Wu, H.M., and Cheung, A.Y. (2014). Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun 5, 3129.PubMedGoogle Scholar
  16. Endo, S., Shinohara, H., Matsubayashi, Y., and Fukuda, H. (2013). A novel pollen-pistil interaction conferring high-temperature tolerance during reproduction via CLE45 signaling. Curr Biol 23, 1670–1676.CrossRefPubMedGoogle Scholar
  17. Escobar-Restrepo, J.M., Huck, N., Kessler, S., Gagliardini, V., Gheyselinck, J., Yang, W.C., and Grossniklaus, U. (2007). The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317, 656–660.CrossRefPubMedGoogle Scholar
  18. Frietsch, S., Wang, Y.F., Sladek, C., Poulsen, L.R., Romanowsky, S.M., Schroeder, J.I., and Harper, J.F. (2007). A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci USA 104, 14531–14536.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gilroy, S., Suzuki, N., Miller, G., Choi, W.G., Toyota, M., Devireddy, A.R., and Mittler, R. (2014). A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19, 623–630.CrossRefPubMedGoogle Scholar
  20. Gish, L.A., and Clark, S.E. (2011). The RLK/Pelle family of kinases. Plant J 66, 117–127.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gorlach, A., Bertram, K., Hudecova, S., and Krizanova, O. (2015). Calcium and ROS: a mutual interplay. Redox Biol 6, 260–271.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gu, T., Mazzurco, M., Sulaman, W., Matias, D.D., and Goring, D.R. (1998). Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci USA 95, 382–387.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Guan, Y., Lu, J., Xu, J., McClure, B., and Zhang, S. (2014). Two mitogen-activated protein kinases, MPK3 and MPK6, are required for funicular guidance of pollen tubes in Arabidopsis. Plant Physiol 165, 528–533.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gui, C.-P., Dong, X., Liu, H.-K., Huang, W.-J., Zhang, D., Wang, S.-J., Barberini, M.L., Gao, X.-Y., Muschietti, J., McCormick, S., and Tang, W.-H. (2014). Overexpression of the tomato pollen receptor kinase LePRK1 rewires pollen tube growth to a blebbing mode. Plant Cell 26, 3538–3555.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Guyon, V., Tang, W.H., Monti, M.M., Raiola, A., Lorenzo, G.D., McCormick, S., and Taylor, L.P. (2004). Antisense phenotypes reveal a role for SHY, a pollen-specific leucine-rich repeat protein, in pollen tube growth. Plant J 39, 643–654.CrossRefPubMedGoogle Scholar
  26. Hamilton, E.S., Jensen, G.S., Maksaev, G., Katims, A., Sherp, A.M., and Haswell, E.S. (2015). Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350, 438–441.CrossRefPubMedGoogle Scholar
  27. Haruta, M., Sabat, G., Stecker, K., Minkoff, B.B., and Sussman, M.R. (2014). A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408–411.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hematy, K., Sado, P.E., Van Tuinen, A., Rochange, S., Desnos, T., Balzergue, S., Pelletier, S., Renou, J.P., and Hofte, H. (2007). A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 17, 922–931.CrossRefPubMedGoogle Scholar
  29. Higashiyama, T., and Takeuchi, H. (2015). The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 66, 393–413.CrossRefPubMedGoogle Scholar
  30. Hothorn, M., Wolf, S., Aloy, P., Greiner, S., and Scheffzek, K. (2004). Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell 16, 3437–3447.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Huang, W.J., Liu, H.K., McCormick, S., and Tang, W.H. (2014). Tomato pistil factor STIG1 promotes in vivo pollen tube growth by binding to phosphatidylinositol 3-phosphate and the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 26, 2505–2523.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Huck, N., Moore, J.M., Federer, M., and Grossniklaus, U. (2003). The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130, 2149–2159.CrossRefPubMedGoogle Scholar
  33. Ivanov, R., Fobis-Loisy, I., and Gaude, T. (2010). When no means no: guide to Brassicaceae self-incompatibility. Trends Plant Sci 15, 387–394.CrossRefPubMedGoogle Scholar
  34. Iwano, M., Ngo, Q.A., Entani, T., Shiba, H., Nagai, T., Miyawaki, A., Isogai, A., Grossniklaus, U., and Takayama, S. (2012). Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. Development 139, 4202–4209.CrossRefPubMedGoogle Scholar
  35. Jiang, L., Yang, S.L., Xie, L.F., Puah, C.S., Zhang, X.Q., Yang, W.C., Sundaresan, V., and Ye, D. (2005). VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17, 584–596.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jingjing Liu S.Z., Xinyang Guo, Lihong Hao, Xiaolin Wei, Yingnan Hou, Jiao Shi and Chaoyang Wang and Li-Jia Qu. (2013). Membrane-bound RLCKs LIP1 and LIP2 are essential male factors controlling male-female attraction in Arabidopsis. Curr Biol 23, 1–6.Google Scholar
  37. Kachroo, A., Schopfer, C.R., Nasrallah, M.E., and Nasrallah, J.B. (2001). Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science 293, 1824–1826.CrossRefPubMedGoogle Scholar
  38. Kanaoka, M.M., and Higashiyama, T. (2015). Peptide signaling in pollen tube guidance. Curr Opin Plant Biol 28, 127–136.CrossRefPubMedGoogle Scholar
  39. Kandasamy, M.K., Nasrallah, J.B., and Nasrallah, M.E. (1994). Pollen-pistil interactions and developmental regulation of pollen tube growth in Arabidopsis. Development 120, 3405–3418.Google Scholar
  40. Kessler, S.A., Lindner, H., Jones, D.S., and Grossniklaus, U. (2015). Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception. EMBO Rep 16, 107–115.CrossRefPubMedGoogle Scholar
  41. Kessler, S.A., Shimosato-Asano, H., Keinath, N.F., Wuest, S.E., Ingram, G., Panstruga, R., and Grossniklaus, U. (2010). Conserved molecular components for pollen tube reception and fungal invasion. Science 330, 968–971.CrossRefPubMedGoogle Scholar
  42. Kim, M.C., Panstruga, R., Elliott, C., Muller, J., Devoto, A., Yoon, H.W., Park, H.C., Cho, M.J., and Schulze-Lefert, P. (2002). Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416, 447–451.CrossRefPubMedGoogle Scholar
  43. Kitashiba, H., Liu, P., Nishio, T., Nasrallah, J.B., and Nasrallah, M.E. (2011). Functional test of Brassica self-incompatibility modifiers in Arabidopsis thaliana. Proc Natl Acad Sci USA 108, 18173–18178.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kullander, K., and Klein, R. (2002). Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3, 475–486.CrossRefPubMedGoogle Scholar
  45. Lalanne, E., Honys, D., Johnson, A., Borner, G.H., Lilley, K.S., Dupree, P., Grossniklaus, U., and Twell, D. (2004). SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16, 229–240.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Leydon, A.R., Beale, K.M., Woroniecka, K., Castner, E., Chen, J., Horgan, C., Palanivelu, R., and Johnson, M.A. (2013). Three MYB transcription factors control pollen tube differentiation required for sperm release. Curr Biol 23, 1209–1214.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li, C., Yeh, F.L., Cheung, A.Y., Duan, Q., Kita, D., Liu, M.C., Maman, J., Luu, E.J., Wu, B.W., Gates, L., Jalal, M., Kwong, A., Carpenter, H., and Wu, H.M. (2015). Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 4, 4.Google Scholar
  48. Li, H.J., and Yang, W.C. (2012). Emerging role of ER quality control in plant cell signal perception. Protein Cell 3, 10–16.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Li, H.J., Xue, Y., Jia, D.J., Wang, T., Hi, D.Q., Liu, J., Cui, F., Xie, Q., Ye, D., and Yang, W.C. (2011). POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell 23, 3288–3302.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y., Chen, S., and Zhou, J.M. (2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15, 329–338.CrossRefPubMedGoogle Scholar
  51. Li, S., Ge, F.R., Xu, M., Zhao, X.Y., Huang, G.Q., Zhou, L.Z., Wang, J.G., Kombrink, A., McCormick, S., Zhang, X.S., and Zhang, Y. (2013). Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. Plant J 74, 486–497.CrossRefPubMedGoogle Scholar
  52. Liang, Y., Tan, Z.M., Zhu, L., Niu, Q.K., Zhou, J.J., Li, M., Chen, L.Q., Zhang, X.Q., and Ye, D. (2013). MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization. PLoS Genet 9, e1003933.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lindner, H., Muller, L.M., Boisson-Dernier, A., and Grossniklaus, U. (2012). CrRLK1L receptor-like kinases: not just another brick in the wall. Curr Opin Plant Biol 15, 659–669.CrossRefPubMedGoogle Scholar
  54. Liu, X., Castro, C.A., Wang, Y., Noble, J.A., Ponvert, N.D., Bundy, M.G., Hoel, C.R., Shpak, E.D., and Palanivelu, R. (2016). The role of LORELEI in pollen tube reception at the interface of the synergid cell and pollen tube requires the modified eight-cysteine motif and the receptor-like kinase FERONIA. Plant Cell pii: tpc.00703.2015.Google Scholar
  55. Loraine, A.E., McCormick, S., Estrada, A., Patel, K., and Qin, P. (2013). RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing. Plant Physiol 162, 1092–1109.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Márton, M.L., Cordts, S., Broadhvest, J., and Dresselhaus, T. (2005). Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307, 573–576.CrossRefPubMedGoogle Scholar
  57. Matsubayashi, Y. (2014). Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol 65, 385–413.CrossRefPubMedGoogle Scholar
  58. Matsubayashi, Y., Ogawa, M., Morita, A., and Sakagami, Y. (2002). An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296, 1470–1472.CrossRefPubMedGoogle Scholar
  59. Miyazaki, S., Murata, T., Sakurai-Ozato, N., Kubo, M., Demura, T., Fukuda, H., and Hasebe, M. (2009). ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol 19, 1327–1331.CrossRefPubMedGoogle Scholar
  60. Murase, K., Shiba, H., Iwano, M., Che, F.S., Watanabe, M., Isogai, A., and Takayama, S. (2004). A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science 303, 1516–1519.CrossRefPubMedGoogle Scholar
  61. Muschietti, J., Dircks, L., Vancanneyt, G., and McCormick, S. (1994). LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. Plant J 6, 321–338.CrossRefPubMedGoogle Scholar
  62. Nasrallah, J.B., and Nasrallah, M.E. (2014). S-locus receptor kinase signalling. Biochem Soc Trans 42, 313–319.CrossRefPubMedGoogle Scholar
  63. Nasrallah, M.E., Liu, P., and Nasrallah, J.B. (2002). Generation of self-incompatible Arabidopsis thaliana by transfer of two S locus genes from A. lyrata. Science 297, 247–249.CrossRefPubMedGoogle Scholar
  64. Ngo, Q.A., Vogler, H., Lituiev, D.S., Nestorova, A., and Grossniklaus, U. (2014). A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery. Dev Cell 29, 491–500.CrossRefPubMedGoogle Scholar
  65. Okuda, S., Tsutsui, H., Shiina, K., Sprunck, S., Takeuchi, H., Yui, R., Kasahara, R.D., Hamamura, Y., Mizukami, A., Susaki, D., Kawano, N., Sakakibara, T., Namiki, S., Itoh, K., Otsuka, K., Matsuzaki, M., Nozaki, H., Kuroiwa, T., Nakano, A., Kanaoka, M.M., Dresselhaus, T., Sasaki, N., and Higashiyama, T. (2009). Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458, 357–361.CrossRefPubMedGoogle Scholar
  66. Palanivelu, R., and Preuss, D. (2000). Pollen tube targeting and axon guidance: parallels in tip growth mechanisms. Trends Cell Biol 10, 517–524.CrossRefPubMedGoogle Scholar
  67. Piffanelli, P., Ramsay, L., Waugh, R., Benabdelmouna, A., D’ Hont, A., Hollricher, K., Jorgensen, J.H., Schulze-Lefert, P., and Panstruga, R. (2004). A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature 430, 887–891.CrossRefPubMedGoogle Scholar
  68. Qu, L.J., Li, L., Lan, Z., and Dresselhaus, T. (2015). Peptide signalling during the pollen tube journey and double fertilization. J Exp Bot 66, 5139–5150.CrossRefPubMedGoogle Scholar
  69. Rockel, N., Wolf, S., Kost, B., Rausch, T., and Greiner, S. (2008). Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53, 133–143.CrossRefPubMedGoogle Scholar
  70. Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., Malinovsky, F.G., Tor, M., de Vries, S., and Zipfel, C. (2011). The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23, 2440–2455.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Salem, T., Mazzella, A., Barberini, M.L., Wengier, D., Motillo, V., Parisi, G., and Muschietti, J. (2010). Mutations in two putative phosphorylation motifs in the tomato pollen receptor kinase LePRK2 show antagonistic effects on pollen tube length. J Biol Chem 286, 4882–4891.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Santiago, J., Henzler, C., and Hothorn, M. (2013). Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Science 341, 889–892.CrossRefPubMedGoogle Scholar
  73. Sato, K., Nishio, T., Kimura, R., Kusaba, M., Suzuki, T., Hatakeyama, K., Ockendon, D.J., and Satta, Y. (2002). Coevolution of the S-locus genes SRK, SLG and SP11/SCR in Brassica oleracea and B. rapa. Genetics 162, 931–940.PubMedPubMedCentralGoogle Scholar
  74. Schallus, T., Jaeckh, C., Feher, K., Palma, A.S., Liu, Y., Simpson, J.C., Mackeen, M., Stier, G., Gibson, T.J., Feizi, T., Pieler, T., and Muhle-Goll, C. (2008). Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol Biol Cell 19, 3404–3414.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Shiba, H., Takayama, S., Iwano, M., Shimosato, H., Funato, M., Nakagawa, T., Che, F.S., Suzuki, G., Watanabe, M., Hinata, K., and Isogai, A. (2001). A pollen coat protein, SP11/SCR, determines the pollen S-specificity in the self-incompatibility of Brassica species. Plant Physiol 125, 2095–2103.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shih, H.W., Miller, N.D., Dai, C., Spalding, E.P., and Monshausen, G.B. (2014). The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol 24, 1887–1892.CrossRefPubMedGoogle Scholar
  77. Shiu, S.H., and Bleecker, A.B. (2003). Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132, 530–543.CrossRefPubMedGoogle Scholar
  78. Stein, K.K., Primakoff, P., and Myles, D. (2004). Sperm-egg fusion: events at the plasma membrane. J Cell Sci 117, 6269–6274.CrossRefPubMedGoogle Scholar
  79. Stone, S.L., Arnoldo, M., and Goring, D.R. (1999). A breakdown of Brassica self-incompatibility in ARC1 antisense transgenic plants. Science 286, 1729–1731.CrossRefPubMedGoogle Scholar
  80. Stone, S.L., Anderson, E.M., Mullen, R.T., and Goring, D.R. (2003). ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell 15, 885–898.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Stuhrwohldt, N., Dahlke, R.I., Kutschmar, A., Peng, X., Sun, M.X., and Sauter, M. (2015). Phytosulfokine peptide signaling controls pollen tube growth and funicular pollen tube guidance in Arabidopsis thaliana. Physiol Plant 153, 643–653.CrossRefPubMedGoogle Scholar
  82. Sun, Y., Li, L., Macho, A.P., Han, Z., Hu, Z., Zipfel, C., Zhou, J.-M., and Chai, J. (2013). Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342, 624–628.CrossRefPubMedGoogle Scholar
  83. Suzuki, G., Kai, N., Hirose, T., Fukui, K., Nishio, T., Takayama, S., Isogai, A., Watanabe, M., and Hinata, K. (1999). Genomic organization of the S locus: Identification and characterization of genes in SLG/SRK region of S(9) haplotype of Brassica campestris (syn. rapa). Genetics 153, 391–400.PubMedPubMedCentralGoogle Scholar
  84. Takasaki, T., Hatakeyama, K., Suzuki, G., Watanabe, M., Isogai, A., and Hinata, K. (2000). The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403, 913–916.CrossRefPubMedGoogle Scholar
  85. Takayama, S., Shimosato, H., Shiba, H., Funato, M., Che, F.S., Watanabe, M., Iwano, M., and Isogai, A. (2001). Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature 413, 534–538.CrossRefPubMedGoogle Scholar
  86. Takeuchi, H., and Higashiyama, T. (2012). A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol 10, e1001449.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Takeuchi, H., and Higashiyama, T. (2016). Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531, 245–248.CrossRefPubMedGoogle Scholar
  88. Tang, W., Ezcurra, I., Muschietti, J., and McCormick, S. (2002). A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 14, 2277–2287.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tang, W., Kelley, D., Ezcurra, I., Cotter, R., and McCormick, S. (2004). LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro. Plant J 39, 343–353.CrossRefPubMedGoogle Scholar
  90. Tsukamoto, T., Qin, Y., Huang, Y., Dunatunga, D., and Palanivelu, R. (2010). A role for LORELEI, a putative glycosylphosphatidylinositolanchored protein, in Arabidopsis thaliana double fertilization and early seed development. Plant J 62, 571–588.CrossRefPubMedGoogle Scholar
  91. Wang, J., Li, H., Han, Z., Zhang, H., Wang, T., Lin, G., Chang, J., Yang, W., and Chai, J. (2015). Allosteric receptor activation by the plant peptide hormone phytosulfokine. Nature 525, 265–268.CrossRefPubMedGoogle Scholar
  92. Wang, T., Liang, L., Xue, Y., Jia, P.F., Chen, W., Zhang, M.X., Wang, Y.C., Li, H.J., and Yang, W.C. (2016). A receptor heteromer mediates the male perception of female attractants in plants. Nature 531, 241–244.CrossRefPubMedGoogle Scholar
  93. Wengier, D., Valsecchi, I., Cabanas, M.L., Tang, W.H., McCormick, S., and Muschietti, J. (2003). The receptor kinases LePRK1 and LePRK2 associate in pollen and when expressed in yeast, but dissociate in the presence of style extract. Proc Natl Acad Sci USA 100, 6860–6865.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wengier, D.L., Mazzella, M.A., Salem, T.M., McCormick, S., and Muschietti, J.P. (2010). STIL, a peculiar molecule from styles, specifically dephosphorylates the pollen receptor kinase LePRK2 and stimulates pollen tube growth in vitro. BMC Plant Biol 10, 33.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wolf, S., and Greiner, S. (2012). Growth control by cell wall pectins. Protoplasma 249 Suppl 2, S169–S175.CrossRefPubMedGoogle Scholar
  96. Wuest, S.E., Vijverberg, K., Schmidt, A., Weiss, M., Gheyselinck, J., Lohr, M., Wellmer, F., Rahnenfü hrer, J., von Mering, C., and Grossniklaus, U. (2010). Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol 20, 506–512.CrossRefPubMedGoogle Scholar
  97. Yalovsky, S., Bloch, D., Sorek, N., and Kost, B. (2008). Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. Plant Physiol 147, 1527–1543.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Yang, W.-C., Shi, D.-Q., and Chen, Y.-H. (2010). Female gametophyte development in flowering plants. Annu Rev Plant Biol 61, 89–108.CrossRefPubMedGoogle Scholar
  99. Zhang, D., Wengier, D., Shuai, B., Gui, C.P., Muschietti, J., McCormick, S., and Tang, W.H. (2008). The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol 148, 1368–1379.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Zhang, Y., and McCormick, S. (2007). A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana. Proc Natl Acad Sci USA 104, 18830–18835.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zhang, Y., He, J., and McCormick, S. (2009). Two Arabidopsis AGC kinases are critical for the polarized growth of pollen tubes. Plant J 58, 474–484.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations