Science China Life Sciences

, Volume 59, Issue 1, pp 89–92

Base-excision repair and beyond —A short summary attributed to scientific achievements of Tomas Lindahl, Nobel Prize Laureate in Chemistry 2015

Open Access
News And Views

References

  1. Adams, A., and Lindahl, T. (1975). Epstein-Barr Virus genomes with properties of circular DNA molecules in carrier cells. Proc Natl Acad Sci USA 72, 1477–1481.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Barnes, D.E., Johnston, L.H., Kodama, K., Tomkinson, A.E., Lasko, D.D., and Lindahl, T. (1990). Human DNA ligase I cDNA: cloning and functional expression in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87, 6679–6683.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Breimer, L., and Lindahl, T. (1980). A DNA glycosylase from Escherichia coli that releases free urea from a polydeoxyribonucleotide containing fragments of base residues. Nucleic Acids Res 8, 6199–6211.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Breimer, L.H., and Lindahl, T. (1984). DNA glycosylase activities for thymine residues damaged by ring saturation, fragmentation, or ring contraction are functions of endonuclease III in Escherichia coli. J Biol Chem 259, 5543–5548.PubMedGoogle Scholar
  5. Breimer, L.H., and Lindahl, T. (1985a). Enzymatic excision of DNA bases damaged by exposure to ionizing radiation or oxidizing agents. Mutat Res 150, 85–89.CrossRefPubMedGoogle Scholar
  6. Breimer, L.H., and Lindahl, T. (1985b). Thymine lesions produced by ionizing radiation in double-stranded DNA. Biochemistry 24, 4018–4022.CrossRefPubMedGoogle Scholar
  7. Chetsanga, C.J., and Lindahl, T. (1979). Release of 7-methylguanine residues whose imidazole rings have been opened from damaged DNA by a DNA glycosylase from Escherichia coli. Nucleic Acids Res 6, 3673–3684.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Crow, Y.J., Hayward, B.E., Parmar, R., Robins, P., Leitch, A., Ali, M., Black, D.N., van Bokhoven, H., Brunner, H.G., Hamel, B.C., Corry, P.C., Cowan, F.M., Frints, S.G., Klepper, J., Livingston, J.H., Lynch, S.A., Massey, R.F., Meritet, J.F., Michaud, J.L., Ponsot, G., Voit, T., Lebon, P., Bonthron, D.T., Jackson, A.P., Barnes, D.E., Lindahl, T. (2006). Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat Genet 38, 917–920.CrossRefPubMedGoogle Scholar
  9. Demple, B., Jacobsson, A., Olsson, M., Robins, P., and Lindahl, T. (1982). Repair of alkylated DNA in Escherichia coli. Physical properties of O6-methylguanine-DNA methyltransferase. J Biol Chem 257, 13776–13780.PubMedGoogle Scholar
  10. Duncan, T., Trewick, S.C., Kolvisto, P., Bates, P.A., Lindahl, T., and Sedgwick, B. (2002). Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci USA 99, 16660–16665.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Franklin, W.A., and Lindahl, T. (1988). DNA deoxyribophosphodiesterase. EMBO J, 7, 3617–3622.PubMedCentralPubMedGoogle Scholar
  12. Hansson, J., Grossman, L., Lindahl, T., and Wood, R.D. (1990). Complementation of the xeroderma pigmentosum DNA repair synthesis defect with Escherichia coli UvrABC proteins in a cell-free system. Nucleic Acids Res 18, 35–40.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Harris, A.L., Karran, P., and Lindahl, T. (1983). O6-Methylguanine-DNA methyltransferase of human lymphoid cells: structural and kinetic properties and absence in repair-deficient cells. Cancer Res 43, 3247–3252.PubMedGoogle Scholar
  14. Jia, G., Fu, Y., Zhao, X.D., Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G., and He, C. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7, 885–887.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Karam, L.R., Calsou, P., Franklin, W.A., Painter, R.B., Olsson, M., and Lindahl, T. (1990). Modification of deoxyribose-phosphate residues by extracts of ataxia telangiectasia cells. Mutat Res 236, 19–26.CrossRefPubMedGoogle Scholar
  16. Karran, P., and Lindahl, T. (1980). Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry 19, 6005–6011.CrossRefPubMedGoogle Scholar
  17. Karran, P., and Lindahl, T. (1985). Cellular defence mechanisms against alkylating agents. Cancer Surv 4, 583–599.PubMedGoogle Scholar
  18. Karran, P., Lindahl, T., and Griffin, B. (1979). Adaptive response to alkylating agents involves alteration in situ of O6-methylguanine residues in DNA. Nature 280, 76–77.CrossRefPubMedGoogle Scholar
  19. Kaschka-Dierich, C., Adams, A., Lindahl, T., Bornkamm, G.W., Bjursell, G., Klein, G., Giovanella, B.C., and Singh, S. (1976). Intracellular forms of Epstein-Barr virus DNA in human tumour cells in vivo. Nature 260, 302–306.CrossRefPubMedGoogle Scholar
  20. Klungland, A., and Lindahl, T. (1997). Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV(FEN1). EMBO J 16, 3341–3348.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Kolvisto, P., Duncan, T., Lindahl, T., and Sedgwick, B. (2003). Minimal methylated substrate and extended substrate range of Escherichia coli AlkB protein, a 1-methyladenine-DNA dioxygenase. J Biol Chem 278, 44348–44354.CrossRefGoogle Scholar
  22. Kuraokam, I., Robins, P., Masutani, C., Hanaoka, F., Gasparutto, D., Cadet, J., Wood, R.D., and Lindahl, T. (2001). Oxygen free radical damage to DNA. Translesion synthesis by human DNA polymerase eta and resistance to exonuclease action at cyclopurine deoxynucleoside residues. J Biol Chem 276, 49283–49288.CrossRefGoogle Scholar
  23. Lee, V.H., Kwong, D.L., Leung, T.W., Choi, C.W., Lam, K.O., Sze, C.K., Ho, P., Chan, W.L., Wong, L.S., and Leung, D. (2015). Post-radiation plasma Epstein-Barr virus DNA and local clinical remission after radical intensity-modulated radiation therapy for nasopharyngeal carcinoma. Clin Oncol doi: 10.1016/j.clon.2015.09.009Google Scholar
  24. Lehmann, A.R., Willis, A.E., Broughton, B.C., James, M.R., Steingrimsdottir, H., Harcourt, S.A., Arlett, C.F., and Lindahl, T. (1988). Relation between the human fibroblast strain 46BR and cell lines representative of Bloom's syndrome. Cancer Res 48, 6343–6347.PubMedGoogle Scholar
  25. Liang, J.H., Gao, R., Xia, Y., Gale, R.P., Chen, R.Z., Yang, Y.Q., Wang, L., Qu, X.Y., Qiu, H.R., Cao, L., Hong, M., Wang, R., Wang, Y., Fan, L., Chen, Y.Y., Hu, Z.B., Li, J.Y., and Xu, W. (2015). Prognostic impact of Epstein-Barr Virus (EBV)-DNA copy number at diagnosis in chronic lymphocytic leukemia. Oncotarget doi: 10.18632/oncotarget.6281 Google Scholar
  26. Lindahl, T. (1972). Mammalian deoxyribonucleases acting on damaged DNA. Johns Hopkins Med J Suppl 1, 3–13.Google Scholar
  27. Lindahl, T. (1976). New class of enzymes acting on damaged DNA. Nature, 259, 64–66.CrossRefPubMedGoogle Scholar
  28. Lindahl, T. (1979). DNA glycosylases, endonucleases for apurinic/ apyrimidinic sites, and base excision-repair. Prog Nucleic Acid Res Mol Biol 22, 135–192.CrossRefPubMedGoogle Scholar
  29. Lindahl, T. (1987). The 1987 Walter Hubert lecture. Regulation and deficiencies in DNA repair. Br J Cancer 56, 91–95.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Lindahl, T. (1990). Repair of intrinsic DNA lesions. Mutat Re 238, 305–311.CrossRefGoogle Scholar
  31. Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature 362, 709–715.CrossRefPubMedGoogle Scholar
  32. Lindahl, T. (2013). My Journey to DNA Repair. Genomics Proteomics Bioinformatics 11, 2–7.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Lindahl, T., and Wood, R.D. (1989). DNA repair and recombination. Curr Opin Cell Biol, 1, 475–480.CrossRefPubMedGoogle Scholar
  34. Ljungguist, S., Andersson, A., and Lindahl, T. (1974). A mammalian endonuclease specific for apurinic sites in double-stranded deoxyribonucleic acid. II. Further studies on the substrate specificity. J Biol Chem 249, 1536–1540.Google Scholar
  35. Ljungguist, S., and Lindahl, T. (1974). A mammalian endonuclease specific for apurinic sites in double-stranded deoxyribonucleic acid. I. Purification and general properties. J Biol Chem 249, 1530–1535.Google Scholar
  36. Ljungguist, S., Lindahl, T., and Howard-Flanders, P. (1976). Methyl methane sulfonate-sensitive mutant of Escherichia coli deficient in an endonuclease specific for apurinic sites in deoxyribonucleic acid. J Bacteriol 126, 646–653.Google Scholar
  37. Ljungguist, S., Nyberg, B., and Lindahl, T. (1975). Mammalian DNA endonuclease acting at apurinic sites: absence of associated exonuclease activity. FEBS Lett 57, 169–171.CrossRefGoogle Scholar
  38. McCarthy, T.V., and Lindahl, T. (1985). Methyl phosphotriesters in alkylated DNA are repaired by the Ada regulatory protein of E. coli. Nucleic Acids Res 13, 2683–2698.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Olsson, M., and Lindahl, T. (1980). Repair of alkylated DNA in Escherichia coli. Methyl group transfer from O6-methylguanine to a protein cysteine residue. J Biol Chem, 255, 10569–10571.PubMedGoogle Scholar
  40. Rydberg, B., and Lindahl, T. (1982). Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J 1, 211–216.PubMedCentralPubMedGoogle Scholar
  41. Rymo, L., Lindahl, T., and Adams, A. (1979). Sites of sequence variability in Epstein-Barr virus DNA from different sources. Proc Natl Acad Sci USA 76, 2794–2798.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Sanderson, R.J., and Lindahl, T. (2002). Down-regulation of DNA repair synthesis at DNA single-strand interruptions in poly(ADP-ribose) polymerase-1 deficient murine cell extracts. DNA Repair, 1, 547–558.CrossRefPubMedGoogle Scholar
  43. Santos, J.C. (2015). Epigenetic regulation of DNA repair machinery in Helicobacter pylori-induced gastric carcinogenesis. World J Gastroenterol 21, 9021–9037.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Sedgwick, B., Robins, P., and Lindahl, T. (2006). Direct removal of alkylation damage from DNA by AlkB and related DNA dioxygenases. Methods Enzymol 408, 108–120.CrossRefPubMedGoogle Scholar
  45. Sedgwick, B., Bates, P.A., Paik, J., Jacobs, S.C., and Lindahl, T. (2007). Repair of alkylated DNA: recent advances. DNA Repair, 6, 429–442.CrossRefPubMedGoogle Scholar
  46. Teo, I., Sedgwick, B., Demple, B., Li, B., and Lindahl, T. (1984). Induction of resistance to alkylating agents in E. coli: the ada+ gene product serves both as a regulatory protein and as an enzyme for repair of mutagenic damage. EMBO J 3, 2151–2157.PubMedCentralPubMedGoogle Scholar
  47. Teo, I., Sedgwick, B., Kilpatrick, M.W., McCarthy, T.V., and Lindahl, T. (1986). The intracellular signal for induction of resistance to alkylating agents in E. coli. Cell 45, 315–324.CrossRefPubMedGoogle Scholar
  48. Tokarz, P., Blasiak, J., and Kaarniranta, K. (2015). Role of the cell cycle re-initiation in DNA damage response of postmitotic cells and its implication in the pathogenesis of neurodegenerative diseases. Rejuvenation Res. Jul 27Google Scholar
  49. Traylen, C., Ramasubramanyan, S., Zuo, J., Rowe, M., Almohannad, R., Heesom, K., Sweet S.M., Matthews D.A., and Sinclair, A.J. (2015). Identification of Epstein-Barr Virus Replication Proteins in Burkitt's Lymphoma Cells. Pathogens 4, 739–751.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Trewick, S.C., Henshaw, T.F., Hausinger, R.P., Lindahl, T., and Sedgwick, B. (2002). Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419, 174–178.CrossRefPubMedGoogle Scholar
  51. Wang, Q.E. (2015). DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies. World J Biol Chem 6, 57–64.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Wood, R.D., Robins, P., and Lindahl, T. (1988). Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell 53, 97–106.CrossRefPubMedGoogle Scholar
  53. Yang, Y.G., Lindahl, T., and Barnes, D.E. (2007). Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873–886.CrossRefPubMedGoogle Scholar
  54. Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., Vågbø, C.B., Shi, Y., Wang, W.L., Song, S.H., Lu, Z., Bosmans, R.P., Dai, Q., Hao, Y.J., Yang, X., Zhao, W.M., Tong, W.M., Wang, X.J., Bogdan, F., Furu, K., Fu, Y., Jia, G., Zhao, X., Liu, J., Krokan, H.E., Klungland, A., Yang, Y.G., and He, C. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49, 18–29PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Microbiology, Division of Diagnostics and Intervention, Institute of Clinical MedicineOslo University HospitalRikshospitalet, OsloNorway
  3. 3.Department of Molecular MedicineInstitute of Basic Medical Sciences, University of OsloOsloNorway

Personalised recommendations