Science China Life Sciences

, Volume 59, Issue 2, pp 172–182 | Cite as

Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds

  • Qing Wang
  • Yi Zhu
  • Lin Sun
  • Lebin Li
  • Shuangxia JinEmail author
  • Xianlong Zhang
Open Access
Research Paper


A promoter of the PNZIP (Pharbitis nil leucine zipper) gene (1.459 kb) was cloned from Pharbitis nil and fused to the GUS (β-glucuronidase) and Bacillus thuringiensis endotoxin (Cry9C) genes. Several transgenic PNZIP::GUS and PNZIP::Cry9C cotton lines were developed by Agrobacterium-mediated transformation. Strong GUS staining was detected in the green tissues of the transgenic PNZIP::GUS cotton plants. In contrast, GUS staining in the reproductive structures such as petals, anther, and immature seeds of PNZIP::GUS cotton was very faint. Two transgenic PNZIP::Cry9C lines and one transgenic cauliflower mosaic virus (CaMV) 35S::Cry9C line were selected for enzyme-linked immunosorbent assay (ELISA) and insect bioassays. Expression of the Cry9C protein in the 35S::Cry9C line maintained a high level in most tissues ranging from 24.6 to 45.5 μg g-1 fresh weight. In green tissues such as the leaves, boll rinds, and bracts of the PNZIP::Cry9C line, the Cry9C protein accumulated up to 50.2, 39.7, and 48.3 μg g-1 fresh weight respectively. In contrast, seeds of the PNZIP::Cry9C line (PZ1.3) accumulated only 0.26 μg g-1 fresh weight of the Cry9C protein, which was 100 times lower than that recorded for the seeds of the CaMV 35S::Cry9C line. The insect bioassay showed that the transgenic PNZIP::Cry9C cotton plant exhibited strong resistance to both the cotton bollworm and the pink bollworm. The PNZIP promoter could effectively drive Bt toxin expression in green tissues of cotton and lower accumulated levels of the Bt protein in seeds. These features should allay public concerns about the safety of transgenic foods. We propose the future utility of PNZIP as an economical, environmentally friendly promoter in cotton biotechnology.


tissue-specific promoter GUS expression Bt toxin transgenic cotton plants 


  1. Adamczyk, J., and Meredith, W. (2004). Genetic basis for variability of Cry1Ac expression among commercial transgenic Bacillus thuringiensis (Bt) cotton cultivars in the United States. J Cotton Sci 8, 17–23.Google Scholar
  2. Bakhsh, A., Rao, A.Q., Shahid, A.A., Husnain, T., and Riazuddin, S. (2010). CaMV 35S is a developmental promoter being temporal and spatial in expression pattern of insecticidal genes (cry1ac & cry2a) in cotton. Aust J Basic Appl Sci 4, 37–44.Google Scholar
  3. Benedict, J., Sachs, E., Altman, D., Deaton, W., Kohel, R., Ring, D., and Berberich, S. (1996). Field performance of cottons expressing transgenic CryIA insecticidal proteins for resistance to Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol 89, 230–238.CrossRefGoogle Scholar
  4. Benfey, P.N., and Chua, N.H. (1990). The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250, 959–966.CrossRefPubMedGoogle Scholar
  5. Benfey, P.N., Ren, L., and Chua, N.H. (1990). Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J 9, 1685.PubMedCentralPubMedGoogle Scholar
  6. Benfey, P.N., Ren, L., and Chua, N.H. (1989). The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8, 2195.PubMedCentralPubMedGoogle Scholar
  7. Block, M.A., Tewari, A.K., Albrieux, C., Maréchal, E., and Joyard, J. (2002). The plant S-adenosyl-l-methionine: Mg-protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. Eur J Biochem 269, 240–248.CrossRefPubMedGoogle Scholar
  8. Carter, C.A., and Smith, A. (2007). Estimating the market effect of a food scare: the case of genetically modified StarLink corn. Rev Econ Stat 89, 522–533.CrossRefGoogle Scholar
  9. Cazzonelli, C.I., McCallum, E.J., Lee, R., and Botella, J.R. (2005). Characterization of a strong, constitutive mung bean (Vigna radiata L.) promoter with a complex mode of regulation in planta. Transgenic Res 14, 941–967.CrossRefPubMedGoogle Scholar
  10. Chen, S., Wu, J., Zhou, B., Huang, J., and Zhang, R. (2000). On the temporal and spatial expression of Bt toxin protein in Bt transgenic cotton. Acta Gossypii Sin 12, 189–193.Google Scholar
  11. Deng, F., Tu, L., Tan, J., Li, Y., Nie, Y., and Zhang, X. (2012). GbPDF1 is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2. Plant Physiol 158, 890–904.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Dong, H., and Li, W. (2007). Variability of endotoxin expression in Bt transgenic cotton. J Agron Crop Sci 193, 21–29.CrossRefGoogle Scholar
  13. Dutt, M., Dhekney, S.A., Soriano, L., Kandel, R., and Grosser, J.W. (2014). Temporal and spatial control of gene expression in horticultural crops. Horticul Res 1, 14047.CrossRefGoogle Scholar
  14. Fitt, G., Daly, J., Mares, C., and Olsen, K. (1998). Changing efficacy of transgenic Bt cotton-patterns and consequences. In: 6th Australisian Applied Entomological Research Conference, University of Queensland, Brisbane 189–196.Google Scholar
  15. Greenplate, J., Head, G., and Penn, S. (1998). Factors potentially influencing the survival of Helicoverpa zea on Bollgard cotton. In: Proceedings of Beltwide Cotton Conferences, Maryland and Washington.Google Scholar
  16. Greenplate, J., Mullins, W., Penn, S., and Embry, K. (2001). Cry1Ac Bollgard® varieties as influenced by environment, variety and plant age: 1999 gene equivalency field studies. In: Proceedings of the Beltwide cotton conference, Memphis 790–793.Google Scholar
  17. Greenplate, J., Penn, S., Mullins, J.W., Oppenhuizen, M., Dugger, P., and Richter, D. (2000). Seasonal Cry1Ac levels in DP50B: the “Bollgard® basis” for Bollgard II. In: 2000 Proceedings Beltwide Cotton Conferences, San Antonio, 4-8 January, National Cotton Council 2, 1039–1040.Google Scholar
  18. Greenplate, J.T. (1999). Quantification of Bacillus thuringiensis insect control protein Cry1Ac over time in Bollgard cotton fruit and terminals. J Econ Entomol 92, 1377–1383.CrossRefGoogle Scholar
  19. Han, J., Tan, J., Tu, L., and Zhang, X. (2014). A peptide hormone gene, GhPSK promotes fibre elongation and contributes to longer and finer cotton fibre. Plant Biotechnol J 12, 861–871.CrossRefPubMedGoogle Scholar
  20. Hu, L., Yang, X., Yuan, D., Zeng, F., and Zhang, X. (2011). GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton. Plant Biotechnol J 9, 1038–1048.CrossRefPubMedGoogle Scholar
  21. Huang, D., Liu, H., and Jiang, S. (2005). Effects of Zhongmiansuo 45 and Zhongmiansuo 41 on experimental population of Spodoptera litura. Acta Phytophyl Sin 33, 1–5.CrossRefGoogle Scholar
  22. Jin, S., Zhang, X., Liang, S., Nie, Y., Guo, X., and Huang, C. (2005). Factors affecting stable transformation and plant regeneration during transforming embryogenic callus of Upland cotton (Gossypium hirsutum L.) via Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 81, 229–237.CrossRefGoogle Scholar
  23. Jin, S., Zhang, X., Nie, Y., Guo, X., Liang, S., and Zhu, H. (2006). Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biologia Plantarum 50, 519–524.CrossRefGoogle Scholar
  24. Jin, S.X., Liu, G.Z., Zhu, H.G., Yang, X.Y., and Zhang, X.L. (2012). Transformation of upland cotton (Gossypium hirsutum L.) with GFP gene as a visual marker. J Int Agr 11, 910–919.CrossRefGoogle Scholar
  25. Kranthi, K.R., Naidu, S., Dhawad, C., Tatwawadi, A., Mate, K., Patil, E., Bharose, A., Behere, G., Wadaskar, R., and Kranthi, S. (2005). Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera). Currentence 89, 291–298.Google Scholar
  26. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30, 325–327.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Li, F., Fan, G., Wang, K., Sun, F., Yuan, Y., Song, G., Li, Q., Ma, Z., Lu, C., and Zou, C. (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genetics 46, 567–572.CrossRefPubMedGoogle Scholar
  28. Li, L., Zhu, Y., Jin, S., and Zhang, X. (2014). Pyramiding Bt genes for increasing resistance of cotton to two major lepidopteran pests: Spodoptera litura and Heliothis armigera. Acta Physiol Plant 36, 2717–2727.CrossRefGoogle Scholar
  29. Liu, G., Li, X., Jin, S., Liu, X., Zhu, L., Nie, Y., and Zhang, X. (2014). Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9, e86895.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Lu, Y., Wu, K., Jiang, Y., Guo, Y., and Desneux, N. (2012). Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–3675.CrossRefPubMedGoogle Scholar
  31. Luan, W., Shen, A., Jin, Z., Song, S., Li, Z., and Sha, A. (2013). Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice. Sci China Life Sci 56, 1113–1123.CrossRefPubMedGoogle Scholar
  32. Mahon, R., Finnergan, J., Olsen, K., and Lawrence, L. (2002). Environmental stress and the efficacy of Bt cotton. Aust Cotton Grower 23, 18–21.Google Scholar
  33. Mascarenhas, J.P., and Hamilton, D.A. (1992). Artifacts in the localization of GUS activity in anothers of petunia transformed with a CaMV 35S-GUS construct. Plant J 2, 405–408.CrossRefGoogle Scholar
  34. Min, L., Zhu, L., Tu, L., Deng, F., Yuan, D., and Zhang, X. (2013). Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase. Plant J 75, 823–835.CrossRefPubMedGoogle Scholar
  35. Olsen, K., Daly, J., Finnegan, E., and Mahon, R. (2005). Changes in Cry1Ac Bt transgenic cotton in response to two environmental factors: temperature and insect damage. J Econ Entomol 98, 1382–1390.CrossRefPubMedGoogle Scholar
  36. Palle, S.R., Campbell, L.M., Pandeya, D., Puckhaber, L., Tollack, L.K., Marcel, S., Sundaram, S., Stipanovic, R.D., Wedegaertner, T.C., and Hinze, L. (2013). RNAi-mediated Ultra-low gossypol cottonseed trait: performance of transgenic lines under field conditions. Plant Biotechnol J 11, 296–304.CrossRefPubMedGoogle Scholar
  37. Perlak, F.J., Oppenhuizen, M., Gustafson, K., Voth, R., Sivasupramaniam, S., Heering, D., Carey, B., Ihrig, R.A., and Roberts, J.K. (2001). Development and commercial use of Bollgard® cotton in the USA–early promises versus today’s reality. Plant J 27, 489–501.CrossRefPubMedGoogle Scholar
  38. Porto, M.S., Pinheiro, M.P.N., Batista, V.G.L., dos Santos, R.C., de Albuquerque, Melo, Filho, P., and de Lima, L.M. (2014). Plant promoters: an approach of structure and function. Mol Biotechnol 56, 38–49.CrossRefPubMedGoogle Scholar
  39. Small, E., and Canada, Cndrd. (2009). Top 100 Food Plants. Ottawa: NRC Research Press.Google Scholar
  40. Stavolone, L., Kononova, M., Pauli, S., Ragozzino, A., de Haan, P., Milligan, S., Lawton, K., and Hohn, T. (2003). Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Mol Biol 53, 703–713.CrossRefGoogle Scholar
  41. Tang, W., Tu, L., Yang, X., Tan, J., Deng, F., Hao, J., Guo, K., Lindsey, K., and Zhang, X. (2014). The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytol 202, 509–520.CrossRefPubMedGoogle Scholar
  42. Taylor, M.R., and Tick, J.S. (2001). The StarLink case: Issues for the future. Washington: Resources for the Future Press.Google Scholar
  43. Twell, D., Klein, T.M., Fromm, M.E., and McCormick, S. (1989). Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol 91, 1270–1274.PubMedCentralCrossRefPubMedGoogle Scholar
  44. van der Leede-Plegt, L.M., van de Ven, B.C., Bino, R.J., van der Salm, T.P., and van Tunen, A.J. (1992). Introduction and differential use of various promoters in pollen grains of Nicotiana glutinosa and Lilium longiflorum. Plant Cell Rep 11, 20–24.CrossRefPubMedGoogle Scholar
  45. Von Wettstein, D., Gough, S., and Kannangara, C.G. (1995). Chlorophyll biosynthesis. Plant Cell 7, 1039.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Wan, P., Wu, K., Huang, M., Yu, D., and Wu, J. (2008). Population dynamics of Spodoptera litura (Lepidoptera: Noctuidae) on Bt cotton in the Yangtze River Valley of China. Environ Entomol 37, 1043–1048.CrossRefPubMedGoogle Scholar
  47. Wilkinson, J.E., Twell, D., and Lindsey, K. (1997). Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plants. J Exp Bot 48, 265–275.CrossRefGoogle Scholar
  48. Wu, K.M., Lu, Y.H., Feng, H.Q., Jiang, Y.Y., and Zhao, J.Z. (2008). Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321, 1676–1678.CrossRefPubMedGoogle Scholar
  49. Xia, L., Xu, Q., and Guo, S. (2004). BT insecticidal gene and its temporal expression in transgenic cotton plants. Zuo Wu Xue Bao 31, 197–202.Google Scholar
  50. Yang, Y., Yang, G., Liu, S., Guo, X., and Zheng, C. (2003). Isolation and functional analysis of a strong specific promoter in photosynthetic tissues. Sci China C Life Sci 46, 651–660.CrossRefPubMedGoogle Scholar
  51. Yang, Y.T., Yu, Y.L., Yang, G.D., Zhang, J.D., and Zheng, C.C. (2009). Tissue-specific expression of the PNZIP promoter is mediated by combinatorial interaction of different cis-elements and a novel transcriptional factor. Nucleic Acids Res 37, 2630–2644.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Yu, Y., Kang, X., Lu, Y., Liang, J., Wang, H., Wu, J., and Yang, Y. (2003). Effects of the transgenic Bt cotton on the increase in population of Podoptera litura Fabricius. Jiangsu J Agr Sci 20, 169–172.Google Scholar
  53. Zhang, S., Lian, Y., Liu, Y., Wang, X., Liu, Y., and Wang, G. (2013). Characterization of a maize Wip1 promoter in transgenic plants. Int J Mol Sci 14, 23872–23892.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Zheng, C.C., Porat, R., Lu, P., and O’Neill, S.D. (1998). PNZIP is a novel mesophyll-specific cDNA that is regulated by phytochrome and a circadian rhythm and encodes a protein with a leucine zipper motif. Plant Physiol 116, 27–35.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Qing Wang
    • 1
  • Yi Zhu
    • 1
  • Lin Sun
    • 1
  • Lebin Li
    • 1
  • Shuangxia Jin
    • 1
    Email author
  • Xianlong Zhang
    • 1
  1. 1.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina

Personalised recommendations