Science China Life Sciences

, Volume 58, Issue 7, pp 627–638 | Cite as

High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop

  • Yang Tian
  • Yan Zeng
  • Jing Zhang
  • ChengGuang Yang
  • Liang Yan
  • XuanJun Wang
  • ChongYing Shi
  • Jing Xie
  • TianYi Dai
  • Lei Peng
  • Yu Zeng Huan
  • AnNi Xu
  • YeWei Huang
  • JiaJin Zhang
  • Xiao Ma
  • Yang Dong
  • ShuMei Hao
  • Jun Sheng
Open Access
Cover Article

Abstract

The drumstick tree (Moringa oleifera Lam.) is a perennial crop that has gained popularity in certain developing countries for its high-nutrition content and adaptability to arid and semi-arid environments. Here we report a high-quality draft genome sequence of M. oleifera. This assembly represents 91.78% of the estimated genome size and contains 19,465 protein-coding genes. Comparative genomic analysis between M. oleifera and related woody plant genomes helps clarify the general evolution of this species, while the identification of several species-specific gene families and positively selected genes in M. oleifera may help identify genes related to M. oleifera’s high protein content, fast-growth, heat and stress tolerance. This reference genome greatly extends the basic research on M. oleifera, and may further promote applying genomics to enhanced breeding and improvement of M. oleifera.

Keywords

genome drumstick tree Moringa oleifera 

Supplementary material

11427_2015_4872_MOESM1_ESM.zip (253 kb)
Supplementary material, approximately 253 KB.
11427_2015_4872_MOESM2_ESM.docx (1.4 mb)
Supplementary material, approximately 1.39 MB.

References

  1. 1.
    Olson ME, Fahey JW. Moringa oleifera: a multipurpose tree for the dry tropics. Revista Mexicana De Biodiversidad, 2011, 82: 1071–1082Google Scholar
  2. 2.
    Horwath M, Benin V. Theoretical investigation of a reported antibiotic from the “Miracle Tree” Moringa oleifera. Computational and Theoretical Chemistry, 2011, 965: 196–201CrossRefGoogle Scholar
  3. 3.
    Makkar HPS, Becker K. Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J Agr Sci, 1997, 128: 311–322CrossRefGoogle Scholar
  4. 4.
    Palada MC. Moringa (Moringa oleifera Lam.): A versatile tree crop with horticultural potential in the subtropical United States. Hortscience, 1996, 31: 794–797Google Scholar
  5. 5.
    Oliveira JTA, Silveira SB, Vasconcelos IM, Cavada BS, Moreira RA. Compositional and nutritional attributes of seeds from the multiple purpose tree Moringa oleifera Lamarck. J Sci Food Agr, 1999, 79: 815–820CrossRefGoogle Scholar
  6. 6.
    Amaglo NK, Bennett RN, Lo Curto RB, Rosa EAS, Lo Turco V, Giuffrida A, Lo Curto A, Crea F, Timpo GM. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem, 2010, 122: 1047–1054CrossRefGoogle Scholar
  7. 7.
    Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 2012, 1: 18PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Maruyama H, Kohara Y, Fujiyama A, Hayashi T, Itoh T. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res, 2014, 24: 1384–1395PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 2011, 27: 578–579PubMedCrossRefGoogle Scholar
  10. 10.
    Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 1999, 27: 573–580PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res, 2005, 110: 462–467PubMedCrossRefGoogle Scholar
  12. 12.
    Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res, 2007, 35: W265–268PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics, 2005, 21Suppl 1: i351–358PubMedCrossRefGoogle Scholar
  14. 14.
    Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796–815Google Scholar
  15. 15.
    Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178–183PubMedCrossRefGoogle Scholar
  16. 16.
    Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296: 92–100PubMedCrossRefGoogle Scholar
  17. 17.
    Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313: 1596–1604PubMedCrossRefGoogle Scholar
  18. 18.
    Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboobur R, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457: 551–556PubMedCrossRefGoogle Scholar
  19. 19.
    Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW, Axtell MJ, Barker E, Barker MS, Bennetzen JL, Bonawitz ND, Chapple C, Cheng C, Correa LG, Dacre M, DeBarry J, Dreyer I, Elias M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, Gramzow L, Gutensohn M, Harholt J, Hattori M, Heyl A, Hirai T, Hiwatashi Y, Ishikawa M, Iwata M, Karol KG, Koehler B, Kolukisaoglu U, Kubo M, Kurata T, Lalonde S, Li K, Li Y, Litt A, Lyons E, Manning G, Maruyama T, Michael TP, Mikami K, Miyazaki S, Morinaga S, Murata T, Mueller-Roeber B, Nelson DR, Obara M, Oguri Y, Olmstead RG, Onodera N, Petersen BL, Pils B, Prigge M, Rensing SA, Riano-Pachon DM, Roberts AW, Sato Y, Scheller HV, Schulz B, Schulz C, Shakirov EV, Shibagaki N, Shinohara N, Shippen DE, Sorensen I, Sotooka R, Sugimoto N, Sugita M, Sumikawa N, Tanurdzic M, Theissen G, Ulvskov P, Wakazuki S, Weng JK, Willats WW, Wipf D, Wolf PG, Yang L, Zimmer AD, Zhu Q, Mitros T, Hellsten U, Loque D, Otillar R, Salamov A, Schmutz J, Shapiro H, Lindquist E, Lucas S, Rokhsar D, Grigoriev IV. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science, 2011, 332: 960–963PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res, 2004, 14: 988–995PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res, 2004, 32: W309–312PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics, 2004, 20: 2878–2879PubMedCrossRefGoogle Scholar
  23. 23.
    Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res, 2003, 31: 365–370PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27–30PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. InterProScan: protein domains identifier. Nucleic Acids Res, 2005, 33: W116–120PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 1997, 25: 955–964PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res, 2013, 41: D226–232PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics, 2013, 29: 2933–2935PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008, 36: D154–158PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Dai X, Zhao PX. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res, 2011, 39: W155–159PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Li L, Stoeckert CJ, Jr., Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res, 2003, 13: 2178–2189PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 2004, 32: 1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Yang ZH. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24: 1586–1591PubMedCrossRefGoogle Scholar
  34. 34.
    De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics, 2006, 22: 1269–1271PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics, 2006, 4: 259–263PubMedCrossRefGoogle Scholar
  36. 36.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876–4882PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R, Lv T, Lv Y, Zheng Z, Sun M, Luo L, Cai M, Gao Y, Yin Y, Xu X, Cheng T. The genome of Prunus mume. Nat Commun, 2012, 3: 1318PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra CA, Hartigan J, Yandell M, Langley CH, Korf I, Neale DB. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics, 2010, 11: 420PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Camon E, Barrell D, Brooksbank C, Magrane M, Apweiler R. The Gene Ontology Annotation (GOA) Project—Application of GO in SWISS-PROT, TrEMBL and InterPro. Comp Funct Genomics, 2003, 4: 71–74PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25–29Google Scholar
  41. 41.
    Bauer S, Grossmann S, Vingron M, Robinson PN. Ontologizer 2.0—a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics, 2008, 24: 1650–1651PubMedCrossRefGoogle Scholar
  42. 42.
    Percudani R, Pavesi A, Ottonello S. Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol, 1997, 268: 322–330PubMedCrossRefGoogle Scholar
  43. 43.
    Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2010, 107: 18724–18728PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449: 463–467PubMedCrossRefGoogle Scholar
  45. 45.
    Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol, 2012, 30: 83–89CrossRefGoogle Scholar
  46. 46.
    Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang ML, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang J, Na JK, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Perez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo MC, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452: 991–996PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R. The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet, 2010, 42: 833–839PubMedCrossRefGoogle Scholar
  48. 48.
    Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G, Hetru C, Hoa NT, Hoffmann JA, Kanzok SM, Letunic I, Levashina EA, Loukeris TG, Lycett G, Meister S, Michel K, Moita LF, Muller HM, Osta MA, Paskewitz SM, Reichhart JM, Rzhetsky A, Troxler L, Vernick KD, Vlachou D, Volz J, von Mering C, Xu J, Zheng L, Bork P, Kafatos FC. Immunity-related genes and gene families in Anopheles gambiae. Science, 2002, 298: 159–165PubMedCrossRefGoogle Scholar
  49. 49.
    Shuai B, Reynaga-Pena CG, Springer PS. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol, 2002, 129: 747–761PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Connelly C, Hieter P. Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell, 1996, 86: 275–285PubMedCrossRefGoogle Scholar
  51. 51.
    Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 1996, 86: 263–274PubMedCrossRefGoogle Scholar
  52. 52.
    Breiteneder H, Pettenburger K, Bito A, Valenta R, Kraft D, Rumpold H, Scheiner O, Breitenbach M. The Gene Coding for the Major Birch Pollen Allergen Betvl, Is Highly Homologous to a Pea Disease Resistance Response Gene. Embo J, 1989, 8: 1935–1938PubMedCentralPubMedGoogle Scholar
  53. 53.
    Markovic-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, Ferreira F, Scheiner O, Breiteneder H. Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J Mol Biol, 2003, 325: 123–133PubMedCrossRefGoogle Scholar
  54. 54.
    Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics, 2010, 8: 77–80PubMedCrossRefGoogle Scholar
  55. 55.
    Boyer LA, Latek RR, Peterson CL. The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol, 2004, 5: 158–163PubMedCrossRefGoogle Scholar
  56. 56.
    Barg R, Sobolev I, Eilon T, Gur A, Chmelnitsky I, Shabtai S, Grotewold E, Salts Y. The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT/MYB domain proteins. Planta, 2005, 221: 197–211PubMedCrossRefGoogle Scholar
  57. 57.
    Mohrmann L, Kal AJ, Verrijzer CP. Characterization of the extended Myb-like DNA-binding domain of trithorax group protein Zeste. J Biol Chem, 2002, 277: 47385–47392PubMedCrossRefGoogle Scholar
  58. 58.
    Kundu-Michalik S, Bisotti MA, Lipsius E, Bauche A, Kruppa A, Klokow T, Kammler G, Kruppa J. Nucleolar binding sequences of the ribosomal protein S6e family reside in evolutionary highly conserved peptide clusters. Mol Biol Evol, 2008, 25: 580–590PubMedCrossRefGoogle Scholar
  59. 59.
    Fromont-Racine M, Senger B, Saveanu C, Fasiolo F. Ribosome assembly in eukaryotes. Gene, 2003, 313: 17–42PubMedCrossRefGoogle Scholar
  60. 60.
    Ferreira-Cerca S, Poll G, Gleizes PE, Tschochner H, Milkereit P. Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol Cell, 2005, 20: 263–275PubMedCrossRefGoogle Scholar
  61. 61.
    Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci, 2006, 31: 342–348PubMedCrossRefGoogle Scholar
  62. 62.
    Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Munch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res, 2003, 31: 374–378PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105–2110PubMedCrossRefGoogle Scholar
  64. 64.
    Poole RL. The TAIR database. Methods Mol Biol, 2007, 406: 179–212PubMedGoogle Scholar
  65. 65.
    Morimoto RI. Cells in stress: transcriptional activation of heat shock genes. Science, 1993, 259: 1409–1410PubMedCrossRefGoogle Scholar
  66. 66.
    Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet, 1988, 22: 631–677PubMedCrossRefGoogle Scholar
  67. 67.
    Lindquist S. The heat-shock response. Annu Rev Biochem, 1986, 55: 1151–1191PubMedCrossRefGoogle Scholar
  68. 68.
    R RK, N SN, S PA, Sinha D, Veedin Rajan VB, Esthaki VK, D’Silva P. HSPIR: a manually annotated heat shock protein information resource. Bioinformatics, 2012, 28: 2853–2855PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Nam KH, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 2002, 110: 203–212PubMedCrossRefGoogle Scholar
  70. 70.
    Bown AW, Shelp BJ. The Metabolism and Functions of [gamma]-Aminobutyric Acid. Plant Physiol, 1997, 115: 1–5PubMedCentralPubMedGoogle Scholar
  71. 71.
    Narayan VS, Nair PM. Metabolism, Enzymology and Possible Roles of 4-Aminobutyrate in Higher-Plants. Phytochemistry, 1990, 29: 367–375CrossRefGoogle Scholar
  72. 72.
    Chung I, Bown AW, Shelp BJ. The production and efflux of 4-aminobutyrate in isolated mesophyll cells. Plant Physiol, 1992, 99: 659–664PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Tuin LG, Shelp BJ. In-Situ [C-14] Glutamate Metabolism by Developing Soybean Cotyledons.1. Metabolic Routes. J Plant Physiol, 1994, 143: 1–7CrossRefGoogle Scholar
  74. 74.
    Benveniste P. Biosynthesis and accumulation of sterols. Annu Rev Plant Biol, 2004, 55: 429–457PubMedCrossRefGoogle Scholar
  75. 75.
    Schaeffer A, Bronner R, Benveniste P, Schaller H. The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. Plant J, 2001, 25: 605–615PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Yang Tian
    • 1
    • 10
    • 13
  • Yan Zeng
    • 4
  • Jing Zhang
    • 8
  • ChengGuang Yang
    • 9
  • Liang Yan
    • 1
    • 5
  • XuanJun Wang
    • 13
  • ChongYing Shi
    • 2
  • Jing Xie
    • 3
  • TianYi Dai
    • 2
  • Lei Peng
    • 2
  • Yu Zeng Huan
    • 1
  • AnNi Xu
    • 1
  • YeWei Huang
    • 13
  • JiaJin Zhang
    • 11
    • 12
  • Xiao Ma
    • 13
  • Yang Dong
    • 7
    • 10
  • ShuMei Hao
    • 6
  • Jun Sheng
    • 13
  1. 1.College of Life SciencesJilin UniversityChangchunChina
  2. 2.College of Food SciencesYunnan Agricultural UniversityKunmingChina
  3. 3.College of Animal SciencesYunnan Agricultural UniversityKunmingChina
  4. 4.College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
  5. 5.Pu’er Institute of Pu-er TeaPu’erChina
  6. 6.School of AgricultureYunnan UniversityKunmingChina
  7. 7.Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
  8. 8.College of Life SciencesHuazhong University of Science and TechnologyWuhanChina
  9. 9.College of Life SciencesWuhan UniversityWuhanChina
  10. 10.Yunnan Institute of LamuKunmingChina
  11. 11.School of Science and Information EngineeringYunnan Agricultural UniversityKunmingChina
  12. 12.State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyKunmingChina
  13. 13.Key Laboratory of Pu-er Tea ScienceMinistry of Education and Yunnan Agricultural UniversityKunmingChina

Personalised recommendations