Science China Life Sciences

, Volume 58, Issue 5, pp 411–419 | Cite as

Three-dimensional bio-printing

  • Qi Gu
  • Jie Hao
  • YangJie Lu
  • Liu Wang
  • Gordon G. WallaceEmail author
  • Qi ZhouEmail author
Open Access
Cover Article


Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.


3D bio-printing cell function fabrication 


  1. 1.
    Hull, Charles W. Apparatus for production of three-dimensional objects by stereolithography. US Patent, 4575330, 1986-3-11Google Scholar
  2. 2.
    Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31: 6121–6130PubMedCrossRefGoogle Scholar
  3. 3.
    Koch L, Gruene M, Unger C, Chichkov B. Laser assisted cell printing. Curr Pharm Biotechnol, 2013, 14: 91–97PubMedGoogle Scholar
  4. 4.
    Zuzak K, Cadeddu JA, Ufret-Vincenty R, Francis RP, Livingston E. Digital light processing hyperspectral imaging apparatus. US 08406859Google Scholar
  5. 5.
    Sun C, Fang N, Wu DM, Zhang X. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensor Actuat a-Phys, 2005, 121: 113–120CrossRefGoogle Scholar
  6. 6.
    Bourell DL, Marcus HL, Barlow JW, Beaman JJ. Selective laser sintering of metals and ceramics. Int J Powder Metall, 1992, 28: 369–381Google Scholar
  7. 7.
    Ulbrich CBL, Zavaglia CAC, Neto PI, Oliveira MF, Silva JVL. Comparison of five rapid prototype techniques (SLS/FDM/DLP/3DP/polyjet). Innov Dev Virtual Phys Prot, 2012, 573–580Google Scholar
  8. 8.
    Anitha R, Arunachalam S, Radhakrishnan P. Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Tech, 2001, 118: 385–388CrossRefGoogle Scholar
  9. 9.
    Tay BY, Evans JRG, Edirisinghe MJ. Solid freeform fabrication of ceramics. Int Mater Rev, 2003, 48: 341–370CrossRefGoogle Scholar
  10. 10.
    Hornbeck, Larry J. Digital light processing for high-brightness high-resolution applications. In: Proceedings of Electronic Imaging’ 97. International Society for Optics and Photonics, 1997Google Scholar
  11. 11.
    Utela B, Storti D, Anderson R, Ganter M. A review of process development steps for new material systems in three dimensional printing (3DP). J Manufact Proc, 2008, 10: 96–104CrossRefGoogle Scholar
  12. 12.
    Mueller B, Kochan D. Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Comput Ind, 1999, 39: 47–53CrossRefGoogle Scholar
  13. 13.
    Singh R. Process capability study of polyjet printing for plastic components. J Mech Sci Technol, 2011, 25: 1011–1015CrossRefGoogle Scholar
  14. 14.
    Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2010, 2: 022001PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials, 2009, 30: 2164–2174PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Derby B. Printing and prototyping of tissues and scaffolds. Science, 2012, 338: 921–926PubMedCrossRefGoogle Scholar
  17. 17.
    Ricci JL, Clark EA, Murriky A, Smay JE. Three-dimensional printing of bone repair and replacement materials: impact on craniofacial surgery. J Craniof Surg, 2012, 23: 304–308CrossRefGoogle Scholar
  18. 18.
    Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 2012, 33: 6020–6041PubMedCrossRefGoogle Scholar
  19. 19.
    Vacanti CA. The history of tissue engineering. J Cell Mol Med, 2006, 10: 569–576PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260: 920–926PubMedCrossRefGoogle Scholar
  21. 21.
    Sekine H, Shimizu T, Yang J, Kobayashi E, Okano T. Pulsatile myocardial tubes fabricated with cell sheet engineering. Circulation, 2006, 114: I87–93PubMedCrossRefGoogle Scholar
  22. 22.
    Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA. Clinical transplantation of a tissue-engineered airway. Lancet, 2008, 372: 2023–2030PubMedCrossRefGoogle Scholar
  23. 23.
    Delaere PR, Hermans R. Clinical transplantation of a tissue-engineered airway. Lancet, 2009, 373: 717–718; author reply 718–719PubMedCrossRefGoogle Scholar
  24. 24.
    Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 2006, 367: 1241–1246PubMedCrossRefGoogle Scholar
  25. 25.
    Hernon CA, Dawson RA, Freedlander E, Short R, Haddow DB, Brotherston M, MacNeil S. Clinical experience using cultured epithelial autografts leads to an alternative methodology for transferring skin cells from the laboratory to the patient. Regen Med, 2006, 1: 809–821PubMedCrossRefGoogle Scholar
  26. 26.
    Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, Sekine W, Sekiya S, Yamato M, Umezu M, Okano T. Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc, 2012, 7: 850–858PubMedCrossRefGoogle Scholar
  27. 27.
    Stanton RA, Billmire DA. Skin resurfacing for the burned patient. Clin Plast Surg, 2002, 29: 29–51PubMedCrossRefGoogle Scholar
  28. 28.
    Muraoka M, Shimizu T, Itoga K, Takahashi H, Okano T. Control of the formation of vascular networks in 3D tissue engineered constructs. Biomaterials, 2013, 34: 696–703PubMedCrossRefGoogle Scholar
  29. 29.
    Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering—in vivo and in vitro applications. Adv Drug Deliv Rev, 2011, 63: 352–366PubMedCrossRefGoogle Scholar
  30. 30.
    Shim JH, Kim JY, Park JK, Hahn SK, Rhie JW, Kang SW, Lee SH, Cho DW. Effect of thermal degradation of SFF-based PLGA scaffolds fabricated using a multi-head deposition system followed by change of cell growth rate. J Biomater Sci Polym Ed, 2010, 21: 1069–1080PubMedCrossRefGoogle Scholar
  31. 31.
    Sekine H, Shimizu T, Sakaguchi K, Dobashi I, Wada M, Yamato M, Kobayashi E, Umezu M, Okano T. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun, 2013, 4: 1399PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Moon S, Kim YG, Dong L, Lombardi M, Haeggstrom E, Jensen RV, Hsiao LL, Demirci U. Drop-on-demand single cell isolation and total RNA analysis. PLoS One, 2011, 6: e17455PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP. High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000, 290: 2123–2126PubMedCrossRefGoogle Scholar
  34. 34.
    Yeong WY, Chua CK, Leong KF, Chandrasekaran M, Lee MW. Indirect fabrication of collagen scaffold based on inkjet printing technique. Rapid Prot J, 2006, 12: 229–237CrossRefGoogle Scholar
  35. 35.
    Weng B, Liu X, Shepherd R, Wallace GG. Inkjet printed polypyrrole/collagen scaffold: a combination of spatial control and electrical stimulation of PC12 cells. Syn Met, 2012, 162: 1375–1380CrossRefGoogle Scholar
  36. 36.
    Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng, 2005, 11: 1658–1666PubMedCrossRefGoogle Scholar
  37. 37.
    Li W, Sun W, Zhang Y, Wei W, Ambasudhan R, Xia P, Talantova M, Lin T, Kim J, Wang X, Kim WR, Lipton SA, Zhang K, Ding S. Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci USA, 2011, 108: 8299–8304PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fang Y, Frampton JP, Raghavan S, Sabahi-Kaviani R, Luker G, Deng CX, Takayama S. Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods, 2012, 18: 647–657PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Demirci U, Montesano G. Single cell epitaxy by acoustic picolitre droplets. Lab Chip, 2007, 7: 1139–1145PubMedCrossRefGoogle Scholar
  40. 40.
    Trappmann B, Chen CS. How cells sense extracellular matrix stiffness: a material’s perspective. Curr Opin Biotech, 2013, 24: 948–953PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tschumperlin DJ, Liu F, Tager AM. Biomechanical regulation of mesenchymal cell function. Curr Opin Rheumatol, 2013, 25: 92–100PubMedCrossRefGoogle Scholar
  42. 42.
    Lee M, Wu BM. Recent advances in 3D printing of tissue engineering scaffolds. Methods Mol Biol, 2012, 868: 257–267PubMedCrossRefGoogle Scholar
  43. 43.
    Matsumoto K, Ishiduka T, Yamada H, Yonehara Y, Arai Y, Honda K. Clinical use of three-dimensional models of the temporomandibular joint established by rapid prototyping based on cone-beam computed tomography imaging data. Oral Radiol, 2014, 30: 98–104CrossRefGoogle Scholar
  44. 44.
    Kawaguchi N, Hatta K, Nakanishi T. 3D-culture system for heart regeneration and cardiac medicine. Biomed Res Int, 2013, 2013: 895967PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Page H, Flood P, Reynaud EG. Three-dimensional tissue cultures: Current trends and beyond. Cell Tissue Res, 2013, 352: 123–131PubMedCrossRefGoogle Scholar
  46. 46.
    Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL, Kachurin A, Church KH, Park H, Mironov V, Markwald R, Vunjak-Novakovic G, Forgacs G. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A, 2008, 14: 413–421PubMedCrossRefGoogle Scholar
  47. 47.
    Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R, Polchow B, Reimers K, Stoelting S, Ma N, Vogt PM, Steinhoff G, Chichkov B. Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods, 2010, 16: 847–854PubMedCrossRefGoogle Scholar
  48. 48.
    Gruene M, Pflaum M, Hess C, Diamantouros S, Schlie S, Deiwick A, Koch L, Wilhelmi M, Jockenhoevel S, Haverich A, Chichkov B. Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng Part C Methods, 2011, 17: 973–982PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Derby B. Bioprinting: Inkjet printing proteins and hybrid cell-containing materials and structures. J Mater Chem, 2008, 18: 5717–5721CrossRefGoogle Scholar
  50. 50.
    De Cossart L, How T, Annis D. A two year study of the performance of a small diameter polyurethane (biomer) arterial prosthesis. J Cardiovasc Surg, 1989, 30: 388Google Scholar
  51. 51.
    Wu LQ, Payne GF. Biofabrication: using biological materials and biocatalysts to construct nanostructured assemblies. Trends Biotechnol, 2004, 22: 593–599PubMedCrossRefGoogle Scholar
  52. 52.
    Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication, 2009, 1: 022001PubMedCrossRefGoogle Scholar
  53. 53.
    Odde DJ, Renn MJ. Laser-guided direct writing for applications in biotechnology. Trends Biotechnol, 1999, 17: 385–389PubMedCrossRefGoogle Scholar
  54. 54.
    Choi WS, Ha D, Park S, Kim T. Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials, 2011, 32: 2500–2507PubMedCrossRefGoogle Scholar
  55. 55.
    Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, Pippenger B, Bareille R, Rémy M, Bellance S. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater, 2010, 6: 2494–2500PubMedCrossRefGoogle Scholar
  56. 56.
    Pepper ME, Parzel CA, Burg T, Boland T, Burg KJL, Groff RE. Design and implementation of a two-dimensional inkjet bioprinter. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. 6001–6005Google Scholar
  57. 57.
    Ringeisen BR, Kim H, Barron JA, Krizman DB, Chrisey DB, Jackman S, Auyeung R, Spargo BJ. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng, 2004, 10: 483–491PubMedCrossRefGoogle Scholar
  58. 58.
    Barron J, Spargo B, Ringeisen B. Biological laser printing of three dimensional cellular structures. Appl Phys A, 2004, 79: 1027–1030CrossRefGoogle Scholar
  59. 59.
    Barron JA, Krizman DB, Ringeisen BR. Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng, 2005, 33: 121–130PubMedCrossRefGoogle Scholar
  60. 60.
    Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 2010, 31: 7250–7256PubMedCrossRefGoogle Scholar
  61. 61.
    Wilson WC, Boland T. Cell and organ printing 1: Protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol, 2003, 272: 491–496PubMedCrossRefGoogle Scholar
  62. 62.
    Nishiyama Y, Nakamura M, Henmi C, Yamaguchi K, Mochizuki S, Nakagawa H, Takiura K. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J Biomech Eng, 2009, 131:035001PubMedCrossRefGoogle Scholar
  63. 63.
    Ahmed EM. Hydrogel: preparation, characterization, and applications. J Adv Res, 2015, 6: 105–121PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater, 2014, 10: 214–223PubMedCrossRefGoogle Scholar
  65. 65.
    Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJ, Hutmacher DW, Melchels FP, Klein TJ, Malda J. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci, 2013, 13: 551–561PubMedCrossRefGoogle Scholar
  66. 66.
    Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 2014, 35: 49–62PubMedCrossRefGoogle Scholar
  67. 67.
    Aguado BA, Mulyasasmita W, Su J, Lampe KJ, Heilshorn SC. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Pt A, 2011, 18: 806–815CrossRefGoogle Scholar
  68. 68.
    Kucukgul C, Ozler SB, Inci I, Karakas E, Irmak S, Gozuacik D, Taralp A, Koc B. 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnol Bioeng, 2015, 112: 811–821PubMedCrossRefGoogle Scholar
  69. 69.
    Ratcliffe JH, Hunneyball IM, Smith A, Wilson CG, Davis SS. Preparation and evaluation of biodegradable polymeric systems for the intra-articular delivery of drugs. J Pharm Pharmacol, 1984, 36: 431–436PubMedCrossRefGoogle Scholar
  70. 70.
    Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000, 1: 31–38CrossRefGoogle Scholar
  71. 71.
    Chung JHY, Naficy S, Yue ZL, Kapsa R, Quigley A, Moulton SE, Wallace GG. Bio-ink properties and printability for extrusion printing living cells. Biomater Sci, 2013, 1: 763–773CrossRefGoogle Scholar
  72. 72.
    Detsch R, Sarker B, Grigore A, Boccaccini AR. Alginate and gelatine blending for bone cell printing and biofabrication. In: IASTED International Conference Biomedical Engineering Innsbruck. Austria: ACTA Press, 2013. 451–455Google Scholar
  73. 73.
    Zhang K, Chou CK, Xia X, Hung MC, Qin L. Block-cell-printing for live single-cell printing. Proc Natl Acad Sci USA, 2014, 111: 2948–2953PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater, 2010, 6: 2028–2034PubMedCrossRefGoogle Scholar
  75. 75.
    Schantz JT, Brandwood A, Hutmacher DW, Khor HL, Bittner K. Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling. J Mater Sci Mater Med, 2005, 16: 807–819PubMedCrossRefGoogle Scholar
  76. 76.
    Cao T, Ho KH, Teoh SH. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng, 2003, 9Suppl 1: S103–112PubMedCrossRefGoogle Scholar
  77. 77.
    Chien KB, Makridakis E, Shah RN. Three-dimensional printing of soy protein scaffolds for tissue regeneration. Tissue Eng Part C Methods, 2013, 19: 417–426PubMedCrossRefGoogle Scholar
  78. 78.
    Shim JH, Lee JS, Kim JY, Cho DW. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng, 2012, 22: 085014CrossRefGoogle Scholar
  79. 79.
    Lee W, Lee V, Polio S, Keegan P, Lee JH, Fischer K, Park JK, Yoo SS. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng, 2010, 105: 1178–1186PubMedGoogle Scholar
  80. 80.
    Xu F, Sridharan B, Wang S, Gurkan UA, Syverud B, Demirci U. Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics, 2011, 5: 022207PubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, Gruene M, Toelk A, Wang W, Mark P. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials, 2011, 32: 9218–9230PubMedCrossRefGoogle Scholar
  82. 82.
    Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 2014, 35: 49–62PubMedCrossRefGoogle Scholar
  83. 83.
    Marcos R, Monteiro RA, Rocha E. Design-based stereological estimation of hepatocyte number, by combining the smooth optical fractionator and immunocytochemistry with anti-carcinoembryonic antigen polyclonal antibodies. Liver Int, 2006, 26: 116–124PubMedCrossRefGoogle Scholar
  84. 84.
    Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A, 2012, 18: 1304–1312PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Butscher A, Bohner M, Hofmann S, Gauckler L, Müller R. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater, 2011, 7: 907–920PubMedCrossRefGoogle Scholar
  86. 86.
    Bartolo PJ, Almeida H, Laoui T. Rapid prototyping and manufacturing for tissue engineering scaffolds. Int J Comput Appl Technol, 2009, 36: 1–9CrossRefGoogle Scholar
  87. 87.
    Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res Part B Appl Biomater, 2005, 74: 782–788PubMedCrossRefGoogle Scholar
  88. 88.
    Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng, 2002, 8: 1–11PubMedCrossRefGoogle Scholar
  89. 89.
    Ang T, Sultana F, Hutmacher D, Wong YS, Fuh J, Mo X, Loh HT, Burdet E, Teoh SH. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Mater Sci Eng C, 2002, 20: 35–42CrossRefGoogle Scholar
  90. 90.
    Liu Tsang V, Bhatia SN. Three-dimensional tissue fabrication. Adv Drug Deliv Rev, 2004, 56: 1635–1647CrossRefGoogle Scholar
  91. 91.
    Mironov V, Prestwich G, Forgacs G. Bioprinting living structures. J Mater Chem, 2007, 17: 2054–2060CrossRefGoogle Scholar
  92. 92.
    Hassan W, Dong Y, Wang W. Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of peg-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res Ther, 2013, 4: 32PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126: 677–689PubMedCrossRefGoogle Scholar
  94. 94.
    Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, Cho SW, Mitalipova M, Pyzocha N, Rojas F, Van Vliet KJ, Davies MC, Alexander MR, Langer R, Jaenisch R, Anderson DG. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater, 2010, 9: 768–778PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Lee S, Kim J, Park TJ, Shin Y, Lee SY, Han YM, Kang S, Park HS. The effects of the physical properties of culture substrates on the growth and differentiation of human embryonic stem cells. Biomaterials, 2011, 32: 8816–8829PubMedCrossRefGoogle Scholar
  96. 96.
    Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun, 2014, 5: 3935PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Mondy WL, Cameron D, Timmermans J-P, De Clerck N, Sasov A, Casteleyn C, Piegl LA. Computer-aided design of microvasculature systems for use in vascular scaffold production. Biofabrication, 2009, 1: 035002PubMedCrossRefGoogle Scholar
  98. 98.
    Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A, 2013, 101: 1255–1264PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol, 2014, 32: 773–785PubMedCrossRefGoogle Scholar
  100. 100.
    Chang CC, Boland ED, Williams SK, Hoying JB. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res Part B Appl Biomater, 2011, 98: 160–170PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.State Key Laboratory of Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
  2. 2.ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation CampusUniversity of WollongongWollongongAustralia

Personalised recommendations