Science China Life Sciences

, Volume 58, Issue 4, pp 328–335 | Cite as

Protein prenylation and human diseases: a balance of protein farnesylation and geranylgeranylation

  • Na Xu
  • Ning Shen
  • XiuXing Wang
  • Shan Jiang
  • Bin Xue
  • ChaoJun Li
Open Access
Review Special Topic: Model Animals and Their Applications

Abstract

The protein prenylation is one of the essential post-translational protein modifications, which extensively exists in the eukaryocyte. It includes protein farnesylation and geranylgeranylation, using farnesyl pyrophosphate (FPP) or geranylgeranyl pyrophosphate (GGPP) as the substrate, respectively. The prenylation occurs by covalent addition of these two types of isoprenoids to cysteine residues at or near the carboxyl terminus of the proteins that possess CaaX motif, such as Ras small GTPase family. The attachment of hydrophobic prenyl groups can anchor the proteins to intracellular membranes and trigger downstream cell signaling pathway. Geranylgeranyl biphosphate synthase (GGPPS) catalyzes the synthesis of 20-carbon GGPP from 15-carbon FPP. The abnormal expression of this enzyme will affect the relative content of FPP and GGPP, and thus disrupts the balance between protein farnesylation and geranylgeranylation, which participates into various aspects of cellular physiology and pathology. In this paper, we mainly review the property of this important protein post-translational modification and research progress in its regulation of cigarette smoke induced pulmonary disease, adipocyte insulin sensitivity, the inflammation response of Sertoli cells, the hepatic lipogenesis and the cardiac hypertrophy.

Keywords

protein prenylation GGPP FPP biological function regulation 

References

  1. 1.
    McTaggart S. Isoprenylated proteins. Cell Mol Life Sci, 2006, 63: 255–267PubMedCrossRefGoogle Scholar
  2. 2.
    Perez-Sala D. Protein isoprenylation in biology and disease: general overview and perspectives from studies with genetically engineered animals. Front Biosci, 2007, 12: 4456–4472PubMedCrossRefGoogle Scholar
  3. 3.
    Rodríguez-Concepción M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol, 2002, 130: 1079–1089PubMedCrossRefGoogle Scholar
  4. 4.
    Eisenreich W, Bacher A, Arigoni D, Rohdich F. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci, 2004, 61: 1401–1426PubMedCrossRefGoogle Scholar
  5. 5.
    Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Ann Rev Plant Biol, 2013, 64: 665–700CrossRefGoogle Scholar
  6. 6.
    Maurer-Stroh S, Washietl S, Eisenhaber F. Protein prenyltransferases. Genome Biol, 2003, 4: 212PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Berndt N, Hamilton AD, Sebti SM. Targeting protein prenylation for cancer therapy. Nat Rev Cancer, 2011, 11: 775–791PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Carboni JM, Yan N, Cox AD, Bustelo X, Graham SM, Lynch MJ, Weinmann R, Seizinger BR, Der CJ, Barbacid M. Farnesyltransferase inhibitors are inhibitors of ras but not r-ras2/tc21, transformation. Oncogene, 1995, 10: 1905–1913PubMedGoogle Scholar
  9. 9.
    Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai J-K. K-and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem, 1997, 272: 14459–14464PubMedCrossRefGoogle Scholar
  10. 10.
    Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer, 2003, 3: 11–22PubMedCrossRefGoogle Scholar
  11. 11.
    Mijimolle N, Velasco J, Dubus P, Guerra C, Weinbaum CA, Casey PJ, Campuzano V, Barbacid M. Protein farnesyltransferase in embryogenesis, adult homeostasis, and tumor development. Cancer Cell, 2005, 7: 313–324PubMedCrossRefGoogle Scholar
  12. 12.
    Sjogren AK, Andersson KM, Liu M, Cutts BA, Karlsson C, Wahlstrom AM, Dalin M, Weinbaum C, Casey PJ, Tarkowski A, Swolin B, Young SG, Bergo MO. GGTase-I deficiency reduces tumor formation and improves survival in mice with K-Ras-induced lung cancer. J Clin Invest, 2007, 117: 1294–1304PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Khan OM, Ibrahim MX, Jonsson IM, Karlsson C, Liu M, Sjogren AK, Olofsson FJ, Brisslert M, Andersson S, Ohlsson C, Hulten LM, Bokarewa M, Bergo MO. Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice. J Clin Invest, 2011, 121: 628–639PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Shotelersuk V, Gahl WA. Hermansky-pudlak syndrome: models for intracellular vesicle formation. Mol Genet Metab, 1998, 65: 85–96PubMedCrossRefGoogle Scholar
  15. 15.
    Larijani B, Hume AN, Tarafder AK, Seabra MC. Multiple factors contribute to inefficient prenylation of Rab27a in Rab prenylation diseases. J Biol Chem, 2003, 278: 46798–46804PubMedCrossRefGoogle Scholar
  16. 16.
    Pereira-Leal JB, Hume AN, Seabra MC. Prenylation of rab GTPases: molecular mechanisms and involvement in genetic disease. FEBS Lett, 2001, 498: 197–200PubMedCrossRefGoogle Scholar
  17. 17.
    Weivoda MM, Hohl RJ. Geranylgeranyl pyrophosphate stimulates PPARγ expression and adipogenesis through the inhibition of osteoblast differentiation. Bone, 2012, 50: 467–476PubMedCrossRefGoogle Scholar
  18. 18.
    Weivoda MM, Hohl RJ. The effects of direct inhibition of geranylgeranyl pyrophosphate synthase on osteoblast differentiation. J Cell Biochem, 2011, 112: 1506–1513PubMedCrossRefGoogle Scholar
  19. 19.
    Li CJ, Ning W, Matthay MA, Feghali-Bostwick CA, Choi AM. MAPK pathway mediates EGR-1-HSP70-dependent cigarette smoke-induced chemokine production. Am J Physiol-Lung Cell Mol Physiol, 2007, 292: L1297–1303PubMedCrossRefGoogle Scholar
  20. 20.
    Ning W, Dong Y, Sun J, Li C, Matthay MA, Feghali-Bostwick CA, Choi AM. Cigarette smoke stimulates matrix metalloproteinase-2 activity via EGR-1 in human lung fibroblasts. Am J Resp Cell Mol Biol, 2007, 36: 480CrossRefGoogle Scholar
  21. 21.
    Ning W, Li CJ, Kaminski N, Feghali-Bostwick CA, Alber SM, Di YP, Otterbein SL, Song R, Hayashi S, Zhou Z, Pinsky DJ, Watkins SC, Pilewski JM, Sciurba FC, Peters DG, Hogg JC, Choi AM. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. Proc Natl Acad Sci USA, 2004, 101: 14895–14900PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Shen N, Shao Y, Lai SS, Qiao L, Yang RL, Xue B, Pan FY, Chen HQ, Li CJ. GGPPS, a new EGR-1 target gene, reactivates ERK 1/2 signaling through increasing ras prenylation. Am J Pathol, 2011, 179: 2740–2750PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chen H, Wang L, Gong T, Yu Y, Zhu C, Li F, Wang L, Li C. EGR-1 regulates Ho-1 expression induced by cigarette smoke. Biochem Biophys Res Commun, 2010, 396: 388–393PubMedCrossRefGoogle Scholar
  24. 24.
    Shen N, Gong T, Wang JD, Meng FL, Qiao L, Yang RL, Xue B, Pan FY, Zhou XJ, Chen HQ, Ning W, Li CJ. Cigarette smoke-induced pulmonary inflammatory responses are mediated by EGR-1/GGPPS/MAPK signaling. Am J Pathol, 2011, 178: 110–118PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature, 2006, 444: 860–867PubMedCrossRefGoogle Scholar
  26. 26.
    Vicent D, Maratos-Flier E, Kahn CR. The branch point enzyme of the mevalonate pathway for protein prenylation is overexpressed in the ob/ob mouse and induced by adipogenesis. Mol Cell Biol, 2000, 20: 2158–2166PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Solomon C, Leitner J, Goalstone M. Dominant negative α-subunit of farnesyl-and geranylgeranyl-transferase I inhibits insulin-induced differentiation of 3T3-L1 pre-adipocytes. Int J Obes Relat Metab Disord, 2003, 27: 40–47PubMedCrossRefGoogle Scholar
  28. 28.
    Shen N, Yu X, Pan FY, Gao X, Xue B, Li CJ. An early response transcription factor, EGR-1, enhances insulin resistance in type 2 diabetes with chronic hyperinsulinism. J Biol Chem, 2011, 286: 14508–14515PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yu X, Shen N, Zhang ML, Pan FY, Wang C, Jia WP, Liu C, Gao Q, Gao X, Xue B, Li CJ. EGR-1 decreases adipocyte insulin sensitivity by tilting PI3K/Akt and MAPK signal balance in mice. EMBO J, 2011, 30: 3754–3765PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Brennan J, Capel B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet, 2004, 5: 509–521PubMedCrossRefGoogle Scholar
  31. 31.
    Mackay S. Gonadal development in mammals at the cellular and molecular levels. Int Rev Cytol, 2000, 200: 47–99PubMedCrossRefGoogle Scholar
  32. 32.
    Philip J, Selvan D, Desmond AD. Mumps orchitis in the non-immune postpubertal male: a resurgent threat to male fertility? BJU Int, 2006, 97: 138–141PubMedCrossRefGoogle Scholar
  33. 33.
    Setchell BP. Blood-testis barrier, junctional and transport proteins and spermatogenesis. Adv Exp Med Biol, 2008, 636: 212–233PubMedCrossRefGoogle Scholar
  34. 34.
    Petersen C, Söder O. The sertoli cell—a hormonal target and ‘super’nurse for germ cells that determines testicular size. Horm Res Paediatr, 2006, 66: 153–161CrossRefGoogle Scholar
  35. 35.
    Sun B, Qi N, Shang T, Wu H, Deng T, Han D. Sertoli cell-initiated testicular innate immune response through toll-like receptor-3 activation is negatively regulated by Tyro3, Axl, and mer receptors. Endocrinology, 2010, 151: 2886–2897PubMedCrossRefGoogle Scholar
  36. 36.
    Riccioli A, Starace D, Galli R, Fuso A, Scarpa S, Palombi F, De Cesaris P, Ziparo E, Filippini A. Sertoli cells initiate testicular innate immune responses through TLR activation. J Immunol, 2006, 177: 7122–7130PubMedCrossRefGoogle Scholar
  37. 37.
    Wang XX, Ying P, Diao F, Wang Q, Ye D, Jiang C, Shen N, Xu N, Chen WB, Lai SS, Jiang S, Miao XL, Feng J, Tao WW, Zhao NW, Yao B, Xu ZP, Sun HX, Li JM, Sha JH, Huang XX, Shi QH, Tang H, Gao X, Li CJ. Altered protein prenylation in sertoli cells is associated with adult infertility resulting from childhood mumps infection. J Exp Med, 2013, 210: 1559–1574PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Frith J, Day CP, Robinson L, Elliott C, Jones DE, Newton JL. Potential strategies to improve uptake of exercise interventions in non-alcoholic fatty liver disease. J Hepatol, 2010, 52: 112–116PubMedCrossRefGoogle Scholar
  39. 39.
    Wang L, Shen ZH, Xu Q. Study on the prevalence of nonalcoholic fatty liver and the association between nonalcoholic fatty liver and metabolic syndrome. Chin J Convalesc Med, 2010, 5: 067Google Scholar
  40. 40.
    Kotronen A, Westerbacka J, Bergholm R, Pietiläinen KH, Yki-Järvinen H. Liver fat in the metabolic syndrome. J Clin Endocrinol Metab, 2007, 92: 3490–3497PubMedCrossRefGoogle Scholar
  41. 41.
    Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology, 2003, 37: 1202–1219PubMedCrossRefGoogle Scholar
  42. 42.
    Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest, 2004, 113: 1408–1418PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hunter J, Tanaka N, Rockman H, Ross J, Chien K. Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem, 1995, 270: 23173PubMedCrossRefGoogle Scholar
  44. 44.
    Sah VP, Minamisawa S, Tam SP, Wu TH, Dorn GW, Ross J, Chien KR, Brown JH. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest, 1999, 103: 1627–1634PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Heineke J, Molkentin J. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol, 2006, 7: 589–600PubMedCrossRefGoogle Scholar
  46. 46.
    Porter KE, Turner NA. Statins and myocardial remodelling: cell and molecular pathways. Expert Rev Mol Med, 2011, 13: e22PubMedCrossRefGoogle Scholar
  47. 47.
    Bergo MO, Lieu HD, Gavino BJ, Ambroziak P, Otto JC, Casey PJ, Walker QM, Young SG. On the physiological importance of endoproteolysis of CAAX proteins. J Biol Chem, 2004, 279: 4729PubMedCrossRefGoogle Scholar
  48. 48.
    Yang J, Mou Y, Wu T, Ye Y, Jiang JC, Zhao CZ, Zhu HH, Du CQ, Zhou L, Hu SJ. Cardiac-specific overexpression of farnesyl pyrophosphate synthase induces cardiac hypertrophy and dysfunction in mice. Cardiovasc Res, 2013, 97: 490–499PubMedCrossRefGoogle Scholar
  49. 49.
    Li L, Chen G, Yang Y, Ye Y, Yao L, Hu S. Chronic inhibition of farnesyl pyrophosphate synthase attenuates cardiac hypertrophy and fibrosis in spontaneously hypertensive rats. Biochem Pharmacol, 2010, 79: 399–406PubMedCrossRefGoogle Scholar
  50. 50.
    Yi P, Han Z, Li X, Olson E. The mevalonate pathway controls heart formation in Drosophila by isoprenylation of Ggamma 1. Science, 2006, 313: 1301PubMedCrossRefGoogle Scholar
  51. 51.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S. Executive summary: heart disease and stroke statistics—2013 update: a report from the american heart association. Circulation, 2013, 127: 143–152PubMedCrossRefGoogle Scholar
  52. 52.
    Xu N, Guan S, Chen Z, Yu Y, Xie J, Pan FY, Zhao NW, Liu L, Yang ZZ, Gao X, Xu B, Li CJ. The alteration of protein prenylation induces cardiomyocyte hypertrophy through Rheb-mTORC1 signalling and leads to chronic heart failure. J Pathol, 2014, doi: 10.1002/path.4480Google Scholar
  53. 53.
    Lane KT, Beese LS. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res, 2006, 47: 681–699PubMedCrossRefGoogle Scholar
  54. 54.
    Edwards PA, Kast HR, Anisfeld AM. Bareing it all: the adoption of LXR and FXR and their roles in lipid homeostasis. J Lipid Res, 2002, 43: 2–12PubMedGoogle Scholar
  55. 55.
    Kalaany NY, Mangelsdorf DJ. LXRS and FXR: The yin and yang of cholesterol and fat metabolism. Ann Rev Physiol, 2006, 68: 159–191CrossRefGoogle Scholar
  56. 56.
    Id Boufker H, Lagneaux L, Fayyad-Kazan H, Badran B, Najar M, Wiedig M, Ghanem G, Laurent G, Body JJ, Journé F. Role of farnesoid X receptor (FXR) in the process of differentiation of bone marrow stromal cells into osteoblasts. Bone, 2011, 49: 1219–1231PubMedCrossRefGoogle Scholar
  57. 57.
    Bełtowski J. Liver X receptors (LXR) as therapeutic targets in dyslipidemia. Cardiovasc Ther, 2008, 26: 297–316PubMedCrossRefGoogle Scholar
  58. 58.
    Mitro N, Mak PA, Vargas L, Godio C, Hampton E, Molteni V, Kreusch A, Saez E. The nuclear receptor LXR is a glucose sensor. Nature, 2006, 445: 219–223PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Na Xu
    • 1
  • Ning Shen
    • 1
  • XiuXing Wang
    • 1
  • Shan Jiang
    • 1
  • Bin Xue
    • 1
  • ChaoJun Li
    • 1
  1. 1.Ministry of Education Key Laboratory of Model Animals for Disease StudyModel Animal Research Center and Medical School of Nanjing University, National Resource Center for Mutant MiceNanjingChina

Personalised recommendations