Science China Life Sciences

, Volume 58, Issue 3, pp 276–286 | Cite as

AtGGM2014, an Arabidopsis gene co-expression network for functional studies

Open Access
Research Paper Special Topic: Plant Biology: Chromatin, Small RNA and Signaling


Gene co-expression networks provide an important tool for systems biology studies. Using microarray data from the ArrayExpress database, we constructed an Arabidopsis gene co-expression network, termed AtGGM2014, based on the graphical Gaussian model, which contains 102,644 co-expression gene pairs among 18,068 genes. The network was grouped into 622 gene co-expression modules. These modules function in diverse house-keeping, cell cycle, development, hormone response, metabolism, and stress response pathways. We developed a tool to facilitate easy visualization of the expression patterns of these modules either in a tissue context or their regulation under different treatment conditions. The results indicate that at least six modules with tissue-specific expression pattern failed to record modular regulation under various stress conditions. This discrepancy could be best explained by the fact that experiments to study plant stress responses focused mainly on leaves and less on roots, and thus failed to recover specific regulation pattern in other tissues. Overall, the modular structures revealed by our network provide extensive information to generate testable hypotheses about diverse plant signaling pathways. AtGGM2014 offers a constructive tool for plant systems biology studies.


Arabidopsis gene co-expression network graphical Gaussian model plant development stress response hormone response 

Supplementary material

11427_2015_4803_MOESM1_ESM.pdf (919 kb)
Figure S1 (PDF 864 KB)
11427_2015_4803_MOESM2_ESM.pdf (245 kb)
Figure S2 (PDF 183 KB)
11427_2015_4803_MOESM3_ESM.pdf (761 kb)
Figure S3 (PDF 692 KB)
11427_2015_4803_MOESM4_ESM.pdf (183 kb)
Figure S4 (PDF 134 KB)
11427_2015_4803_MOESM5_ESM.pdf (603 kb)
Figure S5 (PDF 549 KB)
11427_2015_4803_MOESM6_ESM.pdf (728 kb)
Figure S6 (PDF 673 KB)
11427_2015_4803_MOESM7_ESM.pdf (614 kb)
Figure S7 (PDF 559 KB)
11427_2015_4803_MOESM8_ESM.pdf (425 kb)
Figure S8 (PDF 361 KB)
11427_2015_4803_MOESM9_ESM.pdf (62 kb)
Figure S9 (PDF 17.1 KB)
11427_2015_4803_MOESM10_ESM.pdf (2.2 mb)
Figures 1-6 (PDF 2.16 MB)
11427_2015_4803_MOESM11_ESM.txt (2.8 mb)
Table S2 (TXT 2.77 MB)
11427_2015_4803_MOESM12_ESM.xls (46 kb)
Table S1 (XLS 46.5 KB)
11427_2015_4803_MOESM13_ESM.xls (5 mb)
Table S3 (XLS 5.02 MB)
11427_2015_4803_MOESM14_ESM.xls (1.9 mb)
Table S4 (XLS 1.86 MB)


  1. 1.
    Mentzen WI, Wurtele ES. Regulon organization of Arabidopsis. BMC Plant Biol, 2008, 8: 99PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mao L, Van Hemert JL, Dash S, Dickerson JA. Arabidopsis gene coexpression network and its functional modules. BMC Bioinformatics, 2009, 10: 346PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Zhang W, Morris QD, Chang R, Shai O, Bakowski MA, Mitsakakis N, Mohammad N, Robinson MD, Zirngibl R, Somogyi E, Laurin N, Eftekharpour E, Sat E, Grigull J, Pan Q, Peng WT, Krogan N, Greenblatt J, Fehlings M, van der Kooy D, Aubin J, Bruneau BG, Rossant J, Blencowe BJ, Frey BJ, Hughes TR. The functional landscape of mouse gene expression. J Biol, 2004, 3: 21PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake TA, Lusis AJ, Horvath S. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet, 2006, 2: e130PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Song L, Langfelder P, Horvath S. Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics, 2012, 13: 328PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhang B, Horvath S. A general framework for weighted gene coexpression network analysis. Stat Appl Genet Mol Biol, 2005, 4: Article17PubMedGoogle Scholar
  7. 7.
    Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian net works to analyze expression data. J Comput Biol, 2000, 7: 601–620PubMedCrossRefGoogle Scholar
  8. 8.
    Ma S, Gong Q, Bohnert HJ. An Arabidopsis gene network based on the graphical Gaussian model. Genome Res, 2007, 17: 1614–1625PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Schafer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol Biol, 2005, 4: Article32PubMedGoogle Scholar
  10. 10.
    Wille A, Zimmermann P, Vranova E, Furholz A, Laule O, Bleuler S, Hennig L, Prelic A, von Rohr P, Thiele L, Zitzler E, Gruissem W, Buhlmann P. Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol, 2004, 5: R92PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, Emam I, Farne A, Hastings E, Ison J, Keays M, Kurbatova N, Malone J, Mani R, Mupo A, Pedro Pereira R, Pilicheva E, Rung J, Sharma A, Tang YA, Ternent T, Tikhonov A, Welter D, Williams E, Brazma A, Parkinson H, Sarkans U. ArrayExpress update-trends in database growth and links to data analysis tools. Nucleic Acids Res, 2013, 41: D987–990PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kauffmann A, Gentleman R, Huber W. arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics, 2009, 25: 415–416PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wu ZJ, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F. A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc, 2004, 99: 909–917CrossRefGoogle Scholar
  14. 14.
    Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res, 2012, 40: D1202–1210PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 2003, 19: 185–193PubMedCrossRefGoogle Scholar
  16. 16.
    Theocharidis A, van Dongen S, Enright AJ, Freeman TC. Network visualization and analysis of gene expression data using BioLayout Express(3D). Nat Protoc, 2009, 4: 1535–1550PubMedCrossRefGoogle Scholar
  17. 17.
    Gansner ER, North SC. An open graph visualization system and its applications to software engineering. Softw Pract Exp, 2000, 30: 1203–1233CrossRefGoogle Scholar
  18. 18.
    Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res, 2002, 30: 1575–1584PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    van Dongen S. Graph clustering by flow simulation. Dessertation for Doctoral Degree. Utrecht: Utrecht University, 2000Google Scholar
  20. 20.
    Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics, 2007, 23: 257–258PubMedCrossRefGoogle Scholar
  21. 21.
    Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y. The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J, 2008, 55: 526–542PubMedCrossRefGoogle Scholar
  22. 22.
    Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J, 2007, 50: 347–363PubMedCrossRefGoogle Scholar
  23. 23.
    Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU. A gene expression map of Arabidopsis thaliana development. Nat Genet, 2005, 37: 501–506PubMedCrossRefGoogle Scholar
  24. 24.
    Wang D, Weaver ND, Kesarwani M, Dong X. Induction of protein secretory pathway is required for systemic acquired resistance. Science, 2005, 308: 1036–1040PubMedCrossRefGoogle Scholar
  25. 25.
    Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003, 115: 591–602PubMedCrossRefGoogle Scholar
  26. 26.
    McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411: 709–713PubMedCrossRefGoogle Scholar
  27. 27.
    Long JA, Ohno C, Smith ZR, Meyerowitz EM. TOPLESS regulates apical embryonic fate in Arabidopsis. Science, 2006, 312: 1520–1523PubMedCrossRefGoogle Scholar
  28. 28.
    Cheng Y, Dai X, Zhao Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell, 2007, 19: 2430–2439PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hou H, Erickson J, Meservy J, Schultz EA. FORKED1 encodes a PH domain protein that is required for PIN1 localization in developing leaf veins. Plant J, 2010, 63: 960–973PubMedCrossRefGoogle Scholar
  30. 30.
    O’Maoileidigh DS, Graciet E, Wellmer F. Gene networks controlling Arabidopsis thaliana flower development. New Phytol, 2014, 201: 16–30PubMedCrossRefGoogle Scholar
  31. 31.
    Bowman JL, Smyth DR, Meyerowitz EM. The ABC model of flower development: then and now. Development, 2012, 139: 4095–4098PubMedCrossRefGoogle Scholar
  32. 32.
    Wagner D, Meyerowitz EM. Switching on Flowers: transient LEAFY induction reveals novel aspects of the regulation of reproductive development in Arabidopsis. Front Plant Sci, 2011, 2: 60PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Crawford BC, Ditta G, Yanofsky MF. The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr Biol, 2007, 17: 1101–1108PubMedCrossRefGoogle Scholar
  34. 34.
    Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J, 2004, 39: 366–380PubMedCrossRefGoogle Scholar
  35. 35.
    Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, Chetelat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW. A regulatory network for coordinated flower maturation. PLoS Genet, 2012, 8: e1002506PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Matias-Hernandez L, Battaglia R, Galbiati F, Rubes M, Eichenberger C, Grossniklaus U, Kater MM, Colombo L. VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis. Plant Cell, 2010, 22: 1702–1715PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cucinotta M, Colombo L, Roig-Villanova I. Ovule development, a new model for lateral organ formation. Front Plant Sci, 2014, 5: 117PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Guo H, Ecker JR. The ethylene signaling pathway: new insights. Curr Opin Plant Biol, 2004, 7: 40–49PubMedCrossRefGoogle Scholar
  39. 39.
    Zhao Q, Guo HW. Paradigms and paradox in the ethylene signaling pathway and interaction network. Mol Plant, 2011, 4: 626–634PubMedCrossRefGoogle Scholar
  40. 40.
    Hu Y, Poh HM, Chua NH. The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. Plant J, 2006, 47: 1–9PubMedCrossRefGoogle Scholar
  41. 41.
    Hu Y, Xie Q, Chua NH. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell, 2003, 15: 1951–1961PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Millenaar FF, Cox MC, van Berkel YE, Welschen RA, Pierik R, Voesenek LA, Peeters AJ. Ethylene-induced differential growth of petioles in Arabidopsis. Analyzing natural variation, response kinetics, and regulation. Plant Physiol, 2005, 137: 998–1008PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hebelstrup KH, van Zanten M, Mandon J, Voesenek LA, Harren FJ, Cristescu SM, Moller IM, Mur LA. Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. J Exp Bot, 2012, 63: 5581–5591PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Roine E, Wei W, Yuan J, Nurmiaho-Lassila EL, Kalkkinen N, Romantschuk M, He SY. Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA, 1997, 94: 3459–3464PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Liu Y, Schiff M, Dinesh-Kumar SP. Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J, 2004, 38: 800–809PubMedCrossRefGoogle Scholar
  46. 46.
    Wang D, Amornsiripanitch N, Dong X. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog, 2006, 2: e123PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E, Staskawicz BJ. NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science, 1997, 278: 1963–1965PubMedCrossRefGoogle Scholar
  48. 48.
    Durrant WE, Dong X. Systemic acquired resistance. Annu Rev Phytopathol, 2004, 42: 185–209PubMedCrossRefGoogle Scholar
  49. 49.
    Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 2002, 14: 1737–1749PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell, 2010, 22: 973–990PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zhou L, Jang JC, Jones TL, Sheen J. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA, 1998, 95: 10294–10299PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Gan S, Amasino RM. Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol, 1997, 113: 313–319PubMedPubMedCentralGoogle Scholar
  53. 53.
    Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol, 2009, 69: 473–488PubMedCrossRefGoogle Scholar
  54. 54.
    Ma S, Shah S, Bohnert HJ, Snyder M, Dinesh-Kumar SP. Incorporating motif analysis into gene co-expression networks reveals novel modular expression pattern and new signaling pathways. PLoS Genet, 2013, 9: e1003840PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 2009, 23: 80–92PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, Huang SS, Schmitz RJ, Urich MA, Kuo D, Nery JR, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes TR, Ecker JR. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife, 2013, 2: e00675PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee SY. Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nat Biotechnol, 2010, 28: 149–156PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Arabidopsis Interactome Mapping Consortium. Evidence for network evolution in an Arabidopsis interactome map. Science, 2011, 333: 601–607PubMedCentralCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of Plant Biology and the Genome Center, College of Biological SciencesUniversity of CaliforniaDavisUSA
  2. 2.Departments of Plant Biology and of Crop SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations