Advertisement

Science China Life Sciences

, Volume 57, Issue 11, pp 1103–1114 | Cite as

Edge biomarkers for classification and prediction of phenotypes

  • Tao Zeng
  • WanWei Zhang
  • XiangTian Yu
  • XiaoPing Liu
  • MeiYi Li
  • Rui Liu
  • LuoNan ChenEmail author
Open Access
Review

Abstract

In general, a disease manifests not from malfunction of individual molecules but from failure of the relevant system or network, which can be considered as a set of interactions or edges among molecules. Thus, instead of individual molecules, networks or edges are stable forms to reliably characterize complex diseases. This paper reviews both traditional node biomarkers and edge biomarkers, which have been newly proposed. These biomarkers are classified in terms of their contained information. In particular, we show that edge and network biomarkers provide novel ways of stably and reliably diagnosing the disease state of a sample. First, we categorize the biomarkers based on the information used in the learning and prediction steps. We then briefly introduce conventional node biomarkers, or molecular biomarkers without network information, and their computational approaches. The main focus of this paper is edge and network biomarkers, which exploit network information to improve the accuracy of diagnosis and prognosis. Moreover, by extracting both network and dynamic information from the data, we can develop dynamical network and edge biomarkers. These biomarkers not only diagnose the immediate pre-disease state but also detect the critical molecules or networks by which the biological system progresses from the healthy to the disease state. The identified critical molecules can be used as drug targets, and the critical state indicates the critical point of disease control. The paper also discusses representative biomarker-based methods.

Keywords

biomarker edge biomarker dynamical network biomarker classification prediction phenotype disease diagnosis disease prognosis 

References

  1. 1.
    Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol, 2012, 29: 613–624PubMedCrossRefGoogle Scholar
  2. 2.
    Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol, 2011, 8: 184–187PubMedCrossRefGoogle Scholar
  3. 3.
    Auffray C, Charron D, Hood L. Predictive, preventive, personalized and participatory medicine: back to the future. Genome Med, 2010, 2: 57PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Zeng T, Sun SY, Wang Y, Zhu H, Chen L. Network biomarkers reveal dysfunctional gene regulations during disease progression. FEBS J, 2013, doi:10.1111/febs.12536Google Scholar
  5. 5.
    Zhong Q, Simonis N, Li QR, Charloteaux B, Heuze F, Klitgord N, Tam S, Yu H, Venkatesan K, Mou D, Swearingen V, Yildirim MA, Yan H, Dricot A, Szeto D, Lin C, Hao T, Fan C, Milstein S, Dupuy D, Brasseur R, Hill DE, Cusick ME, Vidal M. Edgetic perturbation models of human inherited disorders. Mol Syst Biol, 2009, 5: 321PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhang W, Zeng T, Chen L. EdgeMarker: identifying differentially correlated molecule pairs as edge-biomarkers. J Theor Biol, 2014, doi:10.1016/j.jtbi.2014.05.041Google Scholar
  7. 7.
    Chen L, Liu R, Liu ZP, Li M, Aihara K. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci Rep, 2012, 2: 342PubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu R, Li M, Liu ZP, Wu J, Chen L, Aihara K. Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci Rep, 2012, 2: 813PubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu R, Wang X, Aihara K, Chen L. Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med Res Rev, 2013, doi:10.1002/med.21293Google Scholar
  10. 10.
    Liu R, Yu X, Liu X, Xu D, Aihara K, Chen L. Identifying critical transitions of complex diseases based on a single sample. Bioinformatics, 2014, doi:10.1093/bioinformatics/btu084CrossRefGoogle Scholar
  11. 11.
    Li M, Zeng T, Liu R, Chen L. Detecting tissue-specific early warning signals for complex diseases based on dynamical network biomarkers: study of type 2 diabetes by cross-tissue analysis. Brief Bioinform, 2013, doi: 10.1093/bib/bbt1027Google Scholar
  12. 12.
    Welcsh PL, King MC. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet, 2001, 10: 705–713PubMedCrossRefGoogle Scholar
  13. 13.
    Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, Heim K, Campillos M, Holzapfel C, Thorand B, Grallert H, Xu T, Bader E, Huth C, Mittelstrass K, Döring A, Meisinger C, Gieger C, Prehn C, Roemisch-Margl W, Carstensen M, Xie L, Yamanaka-Okumura H, Xing G, Ceglarek U, Thiery J, Giani G, Lickert H, Lin X, Li Y, Boeing H, Joost HG, de Angelis MH, Rathmann W, Suhre K, Prokisch H, Peters A, Meitinger T, Roden M, Wichmann HE, Pischon T, Adamski J, Illig T. Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol, 2012, 8: 615PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wemmie JA, Taugher RJ, Kreple CJ. Acid-sensing ion channels in pain and disease. Nat Rev Neurosci, 2013, 14: 461–471PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lampertico P, Vigano M, Cheroni C, Facchetti F, Invernizzi F, Valveri V, Soffredini R, Abrignani S, de Francesco R, Colombo M. IL28B polymorphisms predict interferon-related hepatitis B surface antigen seroclearance in genotype D hepatitis B e antigen-negative patients with chronic hepatitis B. Hepatology, 2013, 57: 890–896PubMedCrossRefGoogle Scholar
  16. 16.
    Joshita S, Umemura T, Katsuyama Y, Ichikawa Y, Kimura T, Morita S, Kamijo A, Komatsu M, Ichijo T, Matsumoto A, Yoshizawa K, Kamijo N, Ota M, Tanaka E. Association of IL28B gene polymorphism with development of hepatocellular carcinoma in Japanese patients with chronic hepatitis C virus infection. Hum Immunol, 2012, 73: 298–300PubMedCrossRefGoogle Scholar
  17. 17.
    Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC, Pochanard P, Mozes E, Garraway LA, Pe’er D. An integrated approach to uncover drivers of cancer. Cell, 2010, 143: 1005–1017PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Metzker ML. Sequencing technologies-the next generation. Nat Rev Genet, 2010, 11: 31–46PubMedCrossRefGoogle Scholar
  19. 19.
    Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature, 2009, 461: 218–223PubMedCrossRefGoogle Scholar
  20. 20.
    Ren X, Wang Y, Chen L, Zhang XS, Jin Q. ellipsoidFN: a tool for identifying a heterogeneous set of cancer biomarkers based on gene expressions. Nucleic Acids Res, 2013, 41: e53PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pritchard JK. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet, 2001, 69: 124–137PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Jorde LB. Linkage disequilibrium and the search for complex disease genes. Genome Res, 2000, 10: 1435–1444PubMedCrossRefGoogle Scholar
  23. 23.
    Stower H. Complex disease: family history versus SNPs for disease predictions. Nat Rev Genet, 2012, 13: 827CrossRefGoogle Scholar
  24. 24.
    van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415: 530–536CrossRefGoogle Scholar
  25. 25.
    Li J, Lenferink AE, Deng Y, Collins C, Cui Q, Purisima EO, O’Connor-McCourt MD, Wang E. Identification of high-quality cancer prognostic markers and metastasis network modules. Nat Commun, 2010, 1: 34PubMedGoogle Scholar
  26. 26.
    Gormley M, Dampier W, Ertel A, Karacali B, Tozeren A. Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets. BMC Bioinformatics, 2007, 8: 415PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Koiol JA, Feng AC, Jia Z, Wang Y, Goodison S, McClelland M, Mercola D. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis. Bioinformatics, 2009, 25: 54–60CrossRefGoogle Scholar
  28. 28.
    Holec M, Klema J, Zelezny F, Tolar J. Comparative evaluation of set-level techniques in predictive classification of gene expression samples. BMC Bioinformatics, 2012, 13(Suppl 10): S15PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lee S, Kim J. A comparative study on gene-set analysis methods for assessing differential expression associated with the survival phenotype. BMC Bioinformatics, 2011, 12: 377PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Abraham G, Kowalczyk A, Loi S, Haviv I, Zobel J. Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context. BMC Bioinformatics, 2010, 11: 277PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Levine DM, Haynor DR, Castle JC, Stepaniants SB, Pellegrini M, Mao M, Johnson JM. Pathway and gene-set activation measurement from mRNA expression data: the tissue distribution of human pathways. Genome Biol, 2006, 7: R93PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lee E, Chuang HY, Kim JW, Ideker T, Lee D. Inferring pathway activity toward precise disease classification. PLoS Comput Biol, 2008, 4: e1000217PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet, 2011, 12: 56–68PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kreeger PK, Lauffenburger DA. Cancer systems biology: a network modeling perspective. Carcinogenesis, 2010, 31: 2–8PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Drier Y, Sheffer M, Domany E. Pathway-based personalized analysis of cancer. Proc Natl Acad Sci USA, 2013, 110: 6388–6393PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol, 2007, 3: 140PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dao P, Wang K, Collins C, Ester M, Lapuk A, Sahinalp SC. Optimally discriminative subnetwork markers predict response to chemotherapy. Bioinformatics, 2011, 27: i205–213PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    He D, Liu ZP, Chen L. Identification of dysfunctional modules and disease genes in congenital heart disease by a network-based approach. BMC Genomics, 2011, 12: 592PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Eddy JA, Hood L, Price ND, Geman D. Identifying tightly regulated and variably expressed networks by Differential Rank Conservation (DIRAC). PLoS Comput Biol, 2010, 6: e1000792PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Jin G, Zhou X, Cui K, Zhang XS, Chen L, Wong ST. Cross-platform method for identifying candidate network biomarkers for prostate cancer. IET Syst Biol, 2009, 3: 505–512PubMedCrossRefGoogle Scholar
  41. 41.
    Winter C, Kristiansen G, Kersting S, Roy J, Aust D, Knosel T, Rummele P, Jahnke B, Hentrich V, Ruckert F, Niedergethmann M, Weichert W, Bahra M, Schlitt HJ, Settmacher U, Friess H, Büchler M, Saeger HD, Schroeder M, Pilarsky C, Grützmann R. Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS Comput Biol, 2012, 8: e1002511PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jiao Y, Lawler K, Patel GS, Purushotham A, Jones AF, Grigoriadis A, Tutt A, Ng T, Teschendorff AE. DART: denoising algorithm based on relevance network topology improves molecular pathway activity inference. BMC Bioinformatics, 2011, 12: 403PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wen Z, Liu ZP, Liu Z, Zhang Y, Chen L. An integrated approach to identify causal network modules of complex diseases with application to colorectal cancer. J Am Med Inform Assoc, 2013, 20: 659–667PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. Nat Methods, 2013, 10: 1108–1115PubMedCrossRefGoogle Scholar
  45. 45.
    Dutkowski J, Ideker T. Protein networks as logic functions in development and cancer. PLoS Comput Biol, 2011, 7: e1002180PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Liu X, Liu ZP, Zhao XM, Chen L. Identifying disease genes and module biomarkers by differential interactions. J Am Med Inform Assoc, 2012, 19: 241–248PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol, 2009, 27: 199–204PubMedCrossRefGoogle Scholar
  48. 48.
    Wang YC, Chen BS. A network-based biomarker approach for molecular investigation and diagnosis of lung cancer. BMC Med Genomics, 2011, 4: 2PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Qian L, Zheng H, Zhou H, Qin R, Li J. classification of time series gene expression in clinical studies via integration of biological network. PLoS One, 2013, 8: e58383PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Yu X, Li G, Chen L. Prediction and early diagnosis of complex diseases by edge-network. Bioinformatics, 2013, doi: 10.1093/bioin-formatics/btt620Google Scholar
  51. 51.
    van de Leemput IA, Wichers M, Cramer AO, Borsboom D, Tuerlinckx F, Kuppens P, van Nes EH, Viechtbauer W, Giltay EJ, Aggen SH, Derom C, Jacobs N, Kendler KS, van der Maas HL, Neale MC, Peeters F, Thiery E, Zachar P, Scheffer M. Critical slowing down as early warning for the onset and termination of depression. Proc Natl Acad Sci USA, 2014, 111: 87–92PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ichikawa S, Ito Y, Uchida K. Periodic Lyapunov differential equation for noise evaluation in oscillatory genetic networks. IEEE Control Applications (CCA) & Intelligent Control (ISIC), 2009. 83–88Google Scholar
  53. 53.
    Sejdic E. Medicine: adapt current tools for handling big data. Nature, 2014, 507: 306PubMedCrossRefGoogle Scholar
  54. 54.
    Restifo NP. A “big data” view of the tumor “immunome”. Immunity, 2013, 39: 631–632PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gijzen H. Development: big data for a sustainable future. Nature, 2013, 502: 38PubMedCrossRefGoogle Scholar
  56. 56.
    Boyle J. Biology must develop its own big-data systems. Nature, 2013, 499: 7PubMedCrossRefGoogle Scholar
  57. 57.
    Marx V. Biology: the big challenges of big data. Nature, 2013, 498: 255–260PubMedCrossRefGoogle Scholar
  58. 58.
    Buxton B, Hayward V, Pearson I, Karkkainen L, Greiner H, Dyson E, Ito J, Chung A, Kelly K, Schillace S. Big data: the next Google. Interview by Duncan Graham-Rowe. Nature, 2008, 455: 8–9Google Scholar
  59. 59.
    Ideker T, Krogan NJ. Differential network biology. Mol Syst Biol, 2012, 8: 565PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Liu M, Liberzon A, Kong SW, Lai WR, Park PJ, Kohane IS, Kasif S. Network-based analysis of affected biological processes in type 2 diabetes models. PLoS Genet, 2007, 3: e96PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ulitsky I, Krishnamurthy A, Karp RM, Shamir R. DEGAS: de novo discovery of dysregulated pathways in human diseases. PLoS One, 2010, 5: e13367PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zhang B, Li H, Riggins RB, Zhan M, Xuan J, Zhang Z, Hoffman EP, Clarke R, Wang Y. Differential dependency network analysis to identify condition-specific topological changes in biological networks. Bioinformatics, 2009, 25: 526–532PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zhang B, Tian Y, Jin L, Li H, Shih Ie M, Madhavan S, Clarke R, Hoffman EP, Xuan J, Hilakivi-Clarke L, Wang Y. DDN: a caBIG(R) analytical tool for differential network analysis. Bioinformatics, 2011, 27: 1036–1038PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kim Y, Kim TK, Yoo J, You S, Lee I, Carlson G, Hood L, Choi S, Hwang D. Principal network analysis: identification of subnetworks representing major dynamics using gene expression data. Bioinformatics, 2011, 27: 391–398PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    West J, Bianconi G, Severini S, Teschendorff AE. Differential network entropy reveals cancer system hallmarks. Sci Rep, 2012, 2: 802PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Sun SY, Liu ZP, Zeng T, Wang Y, Chen L. Spatio-temporal analysis of type 2 diabetes mellitus based on differential expression networks. Sci Rep, 2013, 3: 2268PubMedPubMedCentralGoogle Scholar
  67. 67.
    Zeng T, Zhang CC, Zhang W, Liu R, Liu J, Chen L. Deciphering early development of complex diseases by progressive module network. Methods, 2014, http://dx.doi.org/ 10.1016/j.ymeth.2014.01.021Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Tao Zeng
    • 1
  • WanWei Zhang
    • 1
  • XiangTian Yu
    • 1
    • 2
  • XiaoPing Liu
    • 1
  • MeiYi Li
    • 1
  • Rui Liu
    • 3
  • LuoNan Chen
    • 1
    Email author
  1. 1.Key Laboratory of Systems Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  2. 2.School of MathematicsShandong UniversityJinanChina
  3. 3.School of MathematicsSouth China University of TechnologyGuangzhouChina

Personalised recommendations