Advertisement

Science China Life Sciences

, Volume 57, Issue 12, pp 1177–1182 | Cite as

Application of human bone marrow-derived mesenchymal stem cells in the treatment of radiation-induced Gastrointestinal syndrome

  • Chao Yang
  • WeiMin Dai
  • HaiXu Chen
  • BenYan Wu
Open Access
Review

Abstract

Nuclear accidents and terrorism present a serious threat for mass casualty. Accidental or intended radiation exposure leads to radiation-induced gastrointestinal (GI) syndrome. However, currently there are no approved medical countermeasures for GI syndrome. Thus, developing novel treatments for GI syndrome is urgent. Mesenchymal stem cells (MSCs) derived from bone marrow are a subset of multipotent adult somatic stem cells that have the ability to undergo self-renewal, proliferation and pluripotent differentiation. MSCs have advantages over other stem cells; they can be easily isolated from patients or donors, readily expanded ex vivo, and they possess reparative and immunomodulatory properties. Moreover, MSCs have been shown to be powerful tools in gene therapy and can be effectively transduced with vectors containing therapeutic genes. Therefore, the therapeutic potential of MSCs has been brought into the spotlight for the clinical treatment of GI syndrome. In this review, we discuss the possible role of MSCs in radiation-induced GI syndrome.

Keywords

mesenchymal stem cells radiation-induced gastrointestinal syndrome treatment 

References

  1. 1.
    Gavazzi C, Bhoori S, Lovullo S, Cozzi G, Mariani L. Role of home parenteral nutrition in chronic radiation enteritis. Am J Gastroenterol, 2006, 101: 374–379PubMedCrossRefGoogle Scholar
  2. 2.
    Vidal A, de la Cuerda C, Luis Escat J, Breton I, Camblor M, Garcia-Peris P. Chronic radiation enteritis after ovarian cancer: from home parenteral nutrition to oral diet. Clin Nutr, 2006, 25: 701–704PubMedCrossRefGoogle Scholar
  3. 3.
    Frisby CL, Fraser RJ, Schirmer MB, Yeoh EK, Blackshaw LA. Roles of muscarinic receptor subtypes in small intestinal motor dysfunction in acute radiation enteritis. Am J Physiol Gastrointest Liver Physiol, 2007, 293: G121–127PubMedCrossRefGoogle Scholar
  4. 4.
    Kountouras J, Zavos C. Recent advances in the management of radiation colitis. World J Gastroenterol, 2008, 14: 7289–7301PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells, 2007, 25: 2896–2902PubMedCrossRefGoogle Scholar
  6. 6.
    Bernardo ME, Locatelli F, Fibbe WE. Mesenchymal stromal cells. Ann N Y Acad Sci, 2009, 1176: 101–117PubMedCrossRefGoogle Scholar
  7. 7.
    Linard C, Ropenga A, Vozenin-Brotons MC, Chapel A, Mathe D. Abdominal irradiation increases inflammatory cytokine expression and activates NF-kappaB in rat ileal muscularis layer. Am J Physiol Gastrointest Liver Physiol, 2003, 285: 556–565CrossRefGoogle Scholar
  8. 8.
    Herodin F, Roy L, Grenier N, Delaunay C, Bauge S, Vaurijoux A, Gregoire E, Martin C, Alonso A, Mayol JF, Drouet M. Antiapoptotic cytokines in combination with pegfilgrastim soon after irradiation mitigates myelosuppression in nonhuman primates exposed to high irradiation dose. Exp Hematol, 2007, 35: 1172–1181PubMedCrossRefGoogle Scholar
  9. 9.
    Matsuu-Matsuyama M, Nakashima M, Shichijo K, Okaichi K, Nakayama T, Sekine I. Basic fibroblast growth factor suppresses radiation-induced apoptosis and TP53 pathway in rat small intestine. Radiat Res, 2010, 174: 52–61PubMedCrossRefGoogle Scholar
  10. 10.
    Khizhniak SV, Prokhorova AA, Stepanova LI, Voitsitskii VM. Functioning of the antioxidant system in epithelial cells of small intestine under the influence of ionizing radiation of low dose rate. Radiats Biol Radioecol, 2011, 51: 684–688PubMedGoogle Scholar
  11. 11.
    Hauer-Jensen M, Wang J, Boerma M, Fu Q, Denham JW. Radiation damage to the gastrointestinal tract: mechanisms, diagnosis, and management. Curr Opin Support Palliat Care, 2007, 1: 23–29PubMedCrossRefGoogle Scholar
  12. 12.
    Vyas D, Robertson CM, Stromberg PE, Martin JR, Dunne WM, Houchen CW, Barrett TA, Ayala A, Perl M, Buchman TG, Coopersmith CM. Epithelial apoptosis in mechanistically distinct methods of injury in the murine small intestine. Histol Histopathol, 2007, 22: 623–630PubMedPubMedCentralGoogle Scholar
  13. 13.
    Freeman SL, MacNaughton WK. Nitric oxide inhibitable isoforms of adenylate cyclase mediate epithelial secretory dysfunction following exposure to ionising radiation. Gut, 2004, 53: 214–221PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Merritt AJ, Allen TD, Potten CS, Hickman JA. Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after gamma-irradiation. Oncogene, 1997, 14: 2759–2766PubMedCrossRefGoogle Scholar
  15. 15.
    Rotolo JA, Maj JG, Feldman R, Ren D, Haimovitz-Friedman A, Cordon-Cardo C, Cheng EH, Kolesnick R, Fuks Z. Bax and Bak do not exhibit functional redundancy in mediating radiation-induced endothelial apoptosis in the intestinal mucosa. Int J Radiat Oncol Biol Phys, 2008, 70: 804–815PubMedCrossRefGoogle Scholar
  16. 16.
    Chang HJ, Maj JG, Paris F, Xing HR, Zhang J, Truman JP, Cardon-Cardo C, Haimovitz-Friedman A, Kolesnick R, Fuks Z. ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med, 2005, 11: 484–490CrossRefGoogle Scholar
  17. 17.
    Zhang L, Sun W, Wang J, Zhang M, Yang S, Tian Y, Vidyasagar S, Pena LA, Zhang K, Cao Y, Yin L, Wang W, Schaefer KL, Saubermann LJ, Swarts SG, Fenton BM, Keng PC, Okunieff P. Mitigation effect of an FGF-2 peptide on acute gastrointestinal syndrome after high-dose ionizing radiation. Int J Radiat Oncol Biol Phys, 2010, 77: 261–268PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Shadad AK, Sullivan FJ, Martin JD, Egan LJ. Gastrointestinal radiation injury: symptoms, risk factors and mechanisms. World J Gastroenterol, 2013, 19: 185–198PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Marshman E, Ottewell PD, Potten CS, Watson AJ. Caspase activation during spontaneous and radiation-induced apoptosis in the murine intestine. J Pathol, 2001, 195: 285–292PubMedCrossRefGoogle Scholar
  20. 20.
    Sun Q, Ming L, Thomas SM, Wang Y, Chen ZG, Ferris RL, Grandis JR, Zhang L, Yu J. PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Oncogene, 2009, 28: 2348–2357PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Fei P, El-Deiry WS. P53 and radiation responses. Oncogene, 2003, 22: 5774–5783PubMedCrossRefGoogle Scholar
  22. 22.
    Qiu W, Leibowitz B, Zhang L, Yu J. Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/AKT/p53 axis. Oncogene, 2010, 29: 1622–1632PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    An MJ, Cheon JH, Kim SW, Park JJ, Moon CM, Han SY, Kim ES, Kim TI, Kim WH. Bovine colostrum inhibits nuclear factor kappaB-mediated proinflammatory cytokine expression in intestinal epithelial cells. Nutr Res, 2009, 29: 275–280PubMedCrossRefGoogle Scholar
  24. 24.
    Lysy PA, Campard D, Smets F, Malaise J, Mourad M, Najimi M, Sokal EM. Persistence of a chimerical phenotype after hepatocyte differentiation of human bone marrow mesenchymal stem cells. Cell Prolif, 2008, 41: 36–58PubMedCrossRefGoogle Scholar
  25. 25.
    Reger RL, Tucker AH, Wolfe MR. Differentiation and characterization of human MSCs. Methods Mol Biol, 2008, 449: 93–107PubMedGoogle Scholar
  26. 26.
    Tekkatte C, Vidyasekar P, Kapadia NK, Verma RS. Enhancement of adipogenic and osteogenic differentiation of human bone-marrow-derived mesenchymal stem cells by supplementation with umbilical cord blood serum. Cell Tissue Res, 2012, 347: 383–395PubMedCrossRefGoogle Scholar
  27. 27.
    Tao XR, Li WL, Su J, Jin CX, Wang XM, Li JX, Hu JK, Xiang ZH, Lau JT, Hu YP. Clonal mesenchymal stem cells derived from human bone marrow can differentiate into hepatocyte-like cells in injured livers of SCID mice. J Cell Biochem, 2009, 108: 693–704PubMedCrossRefGoogle Scholar
  28. 28.
    Alexanian AR. An efficient method for generation of neural-like cells from adult human bone marrow-derived mesenchymal stem cells. Regen Med, 2010, 5: 891–900PubMedCrossRefGoogle Scholar
  29. 29.
    Lin X, Peng P, Cheng L, Chen S, Li K, Li ZY, Mo YH, Zhou Z, Li M. A natural compound induced cardiogenic differentiation of endogenous MSCs for repair of infarcted heart. Differentiation, 2012, 83: 1–9PubMedCrossRefGoogle Scholar
  30. 30.
    Huang J, Zhang Z, Guo J, Ni A, Deb A, Zhang L, Mirotsou M, Pratt RE, Dzau VJ. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res, 2010, 106: 1753–1762PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 2010, 28: 585–596PubMedPubMedCentralGoogle Scholar
  32. 32.
    Kudo K, Liu Y, Takahashi K, Tarusawa K, Osanai M, Hu DL, Kashiwakura I, Kijima H, Nakane A. Transplantation of mesenchymal stem cells to prevent radiation-induced intestinal injury in mice. J Radiat Res (Tokyo), 2010, 51: 73–79CrossRefGoogle Scholar
  33. 33.
    Semont A, Francois S, Mouiseddine M, Francois A, Sache A, Frick J, Thierry D, Chapel A. Mesenchymal stem cells increase self-renewal of small intestinal epithelium and accelerate structural recovery after radiation injury. Adv Exp Med Biol, 2006, 585: 19–30PubMedCrossRefGoogle Scholar
  34. 34.
    Yim YS, Noh YH, Kim DH, Lee MW, Cheuh HW, Lee SH, Yoo KH, Jung HL, Sung KW, Choi SJ, Oh WI, Yang YS, Koo HH. Correlation between the immature characteristics of umbilical cord blood-derived mesenchymal stem cells and engraftment of hematopoietic stem cells in NOD/SCID mice. Transplant Proc, 2010, 42: 2753–2758PubMedCrossRefGoogle Scholar
  35. 35.
    Jin G, Prabhakaran MP, Ramakrishna S. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater, 2011, 7: 3113–3122PubMedCrossRefGoogle Scholar
  36. 36.
    Mouiseddine M, Francois S, Semont A, Sache A, Allenet B, Mathieu N, Frick J, Thierry D, Chapel A. Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model. Br J Radiol, 2007, 80 Spec No 1: S49–55CrossRefGoogle Scholar
  37. 37.
    Quinones HI, List AF, Gerner EW. Selective exclusion by the polyamine transporter as a mechanism for differential radioprotection of amifostine derivatives. Clin Cancer Res, 2002, 8: 1295–1300PubMedGoogle Scholar
  38. 38.
    Bernardo ME, Emons JA, Karperien M, Nauta AJ, Willemze R, Roelofs H, Romeo S, Marchini A, Rappold GA, Vukicevic S, Locatelli F, Fibbe WE. Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connect Tissue Res, 2007, 48: 132–140PubMedCrossRefGoogle Scholar
  39. 39.
    Chen FH, Fu SY, Yang YC, Wang CC, Chiang CS, Hong JH. Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/CXCR4 pathway. Int J Radiat Oncol Biol Phys, 2013, 86: 777–784PubMedCrossRefGoogle Scholar
  40. 40.
    Vagima Y, Lapid K, Kollet O, Goichberg P, Alon R, Lapidot T. Pathways implicated in stem cell migration: the SDF-1/CXCR4 axis. Methods Mol Biol, 2011, 750: 277–289PubMedCrossRefGoogle Scholar
  41. 41.
    Hocking AM, Gibran NS. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res, 2010, 316: 2213–2219PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zhang J, Gong JF, Zhang W, Zhu WM, Li JS. Effects of transplanted bone marrow mesenchymal stem cells on the irradiated intestine of mice. J Biomed Sci, 2008, 15: 585–594PubMedCrossRefGoogle Scholar
  43. 43.
    Ben-Baruch A. Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin Exp Metastasis, 2008, 25: 345–356PubMedCrossRefGoogle Scholar
  44. 44.
    Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol, 2008, 180: 2581–2587PubMedCrossRefGoogle Scholar
  45. 45.
    Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, Eggert K, Gehling UM, Rudolph C, Schlegelberger B, Cornils K, Zustin J, Spiess AN, Zander AR. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS One, 2011, 6: e14486PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med, 2007, 4Suppl 1: S21–26PubMedCrossRefGoogle Scholar
  47. 47.
    Li Z, Jiang CM, An S, Cheng Q, Huang YF, Wang YT, Gou YC, Xiao L, Yu WJ, Wang J. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. Oral Dis, 2014, 20: 25–34PubMedCrossRefGoogle Scholar
  48. 48.
    Hoogduijn M J, Popp F, Verbeek R, Masoodi M, Nicolaou A, Baan C, Dahlke MH. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol, 2010, 10: 1496–1500PubMedCrossRefGoogle Scholar
  49. 49.
    Marigo I, Dazzi F. The immunomodulatory properties of mesenchymal stem cells. Semin Immunopathol, 2011, 33: 593–602PubMedCrossRefGoogle Scholar
  50. 50.
    Shi M, Liu ZW, Wang FS. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol, 2011, 164: 1–8PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation, 2010, 90: 1312–1320PubMedCrossRefGoogle Scholar
  52. 52.
    Bassi EJ, Aita CA, Camara NO. Immune regulatory properties of multipotent mesenchymal stromal cells: Where do we stand? World J Stem Cells, 2011, 3: 1–8PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Najar M, Raicevic G, Fayyad-Kazan H, De Bruyn C, Bron D, Toungouz M, Lagneaux L. Immune-related antigens, surface molecules and regulatory factors in human-derived mesenchymal stromal cells: the expression and impact of inflammatory priming. Stem Cell Rev, 2012, 8: 1188–1198PubMedCrossRefGoogle Scholar
  54. 54.
    Krampera M. Mesenchymal stromal cell “licensing’: a multistep process. Leukemia, 2011, 25: 1408–1414PubMedCrossRefGoogle Scholar
  55. 55.
    Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med, 2009, 15: 42–49PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Holley AK, Bakthavatchalu V, Velez-Roman JM, St Clair DK. Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci, 2011, 12: 7114–7162PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Niu Y, Wang H, Wiktor-Brown D, Rugo R, Shen H, Huq MS, Engelward B, Epperly M, Greenberger JS. Irradiated esophageal cells are protected from radiation-induced recombination by MnSOD gene therapy. Radiat Res, 2010, 173: 453–461PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Epperly MW, Wegner R, Kanai AJ, Kagan V, Greenberger EE, Nie S, Greenberger JS. Effects of MnSOD-plasmid liposome gene therapy on antioxidant levels in irradiated murine oral cavity orthotopic tumors. Radiat Res, 2007, 167: 289–297PubMedCrossRefGoogle Scholar
  59. 59.
    Greenberger JS, Epperly MW. Antioxidant gene therapeutic approaches to normal tissue radioprotection and tumor radiosensitization. In Vivo, 2007, 21: 141–146PubMedGoogle Scholar
  60. 60.
    Epperly MW, Smith T, Zhang X, Goff JP, Franicola D, Greenberger B, Komanduri P, Wang H, Greenberger JS. Modulation of in utero total body irradiation induced newborn mouse growth retardation by maternal manganese superoxide dismutase-plasmid liposome (MnSOD-PL) gene therapy. Gene Ther, 2011, 18: 579–583PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ramanathan R, Misra UK. Radioprotection of lipogenesis from glucose (U-14C) and activities of pyridine nucleotide dehydrogenases in liver of gamma-irradiated female rats by cystamine. Int J Radiat Biol Relat Stud Phys Chem Med, 1975, 28: 35–43PubMedCrossRefGoogle Scholar
  62. 62.
    Yang C, Chen HX, Zhou Y, Liu MX, Wang Y, Wang JX, Ren SP, Han Y, Wu BY. Manganese superoxide dismutase gene therapy protects against irradiation-induced intestinal injury. Curr Gene Ther, 2013, 13: 305–314PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Gastrointestinal Department of Southern BuildingGeneral Hospital of Chinese PLABeijingChina
  2. 2.Department of Thoracic SurgeryGeneral Hospital of Chinese PLABeijingChina
  3. 3.Institute of Gerontology and GeriatricsGeneral Hospital of Chinese PLABeijingChina

Personalised recommendations