Advertisement

Science China Life Sciences

, Volume 57, Issue 8, pp 802–808 | Cite as

ACE2/Ang-(1–7) signaling and vascular remodeling

  • ZhenZhou Zhang
  • LaiJiang Chen
  • JiuChang Zhong
  • PingJin Gao
  • Gavin Y. Oudit
Open Access
Review Thematic Issue: Vascular Homeostasis and Injury-Reconstruction

Abstract

The renin-angiotensin system (RAS) regulates vascular tone and plays a critical role in vascular remodeling, which is the result of a complex interplay of alterations in vascular tone and structure. Inhibition of the RAS has led to important pharmacological tools to prevent and treat vascular diseases such as hypertension, diabetic vasculopathy and atherosclerosis. Angiotensin converting enzyme 2 (ACE2) was recently identified as a multifunctional monocarboxypeptidase responsible for the conversion of angiotensin (Ang) II to Ang-(1–7). The ACE2/Ang-(1–7) signaling has been shown to prevent cellular proliferation, pathological hypertrophy, oxidative stress and vascular fibrosis. Thus, the ACE2/Ang-(1–7) signaling is deemed to be beneficial to the cardiovascular system as a negative regulator of the RAS. The addition of the ACE2/Ang-(1–7) signaling to the complexities of the RAS may lead to the development of novel therapeutics for the treatment of hypertension and other vascular diseases. The present review considers recent findings regarding the ACE2/Ang-(1–7) signaling and focuses on its regulatory roles in processes related to proliferation, inflammation, vascular fibrosis and remodeling, providing proof of principle for the potential use of ACE2 as a novel therapy for vascular disorders related to vascular remodeling.

Keywords

angiotensin converting enzyme 2 inflammation vascular remodeling angiotensin II oxidative stress 

References

  1. 1.
    Jin HY, Song B, Oudit GY, Davidge ST, Yu HM, Jiang YY, Gao PJ, Zhu DL, Ning G, Kassiri Z, Penninger JM, Zhong JC. ACE2 deficiency enhances angiotensin II-mediated aortic profilin-1 expression, inflammation and peroxynitrite production. PLoS ONE, 2012, 7: e38502PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP, Kimura A, Ito H, Penninger JM, Imai Y, Kuba K. Apelin is a positive regulator of ACE2 in failing hearts. J Clin Invest, 2013, 123: 5203–5211PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Schiffrin EL. Vascular remodeling in hypertension: mechanisms and treatment. Hypertension, 2012, 59: 367–374PubMedCrossRefGoogle Scholar
  4. 4.
    Patel VB, Bodiga S, Basu R, Das SK, Wang W, Wang Z, Lo J, Grant MB, Zhong J, Kassiri Z, Oudit GY. Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: a critical role of the angiotensin II/AT1 receptor axis. Circ Res, 2012, 110: 1322–1335PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Heeneman S, Sluimer JC, Daemen MJ. Angiotensin-converting enzyme and vascular remodeling. Circ Res, 2007, 101: 441–454PubMedCrossRefGoogle Scholar
  6. 6.
    Song B, Jin H, Yu X, Zhang Z, Yu H, Ye J, Xu Y, Zhou T, Oudit GY, Ye JY, Chen C, Gao P, Zhu D, Penninger JM, Zhong JC. Angiotensin-converting enzyme 2 attenuates oxidative stress and VSMC proliferation via the JAK2/STAT3/SOCS3 and profilin-1/MAPK signaling pathways. Regul Pept, 2013, 185: 44–51PubMedCrossRefGoogle Scholar
  7. 7.
    Schiffrin EL, Touyz RM. From bedside to bench to bedside: role of renin-angiotensin-aldosterone system in remodeling of resistance arteries in hypertension. Am J Physiol Heart Circ Physiol, 2004, 287: H435–446PubMedCrossRefGoogle Scholar
  8. 8.
    Zhong JC, Huang Y, Yung LM, Lau CW, Leung FP, Wong WT, Lin SG, Yu XY. The novel peptide apelin regulates intrarenal artery tone in diabetic mice. Regul Pept, 2007, 144: 109–114PubMedCrossRefGoogle Scholar
  9. 9.
    Bodiga S, Zhong JC, Wang W, Basu R, Lo J, Liu GC, Guo D, Holland SM, Scholey JW, Penninger JM, Kassiri Z, Oudit GY. Enhanced susceptibility to biomechanical stress in ACE2 null mice is prevented by loss of the p47(phox) NADPH oxidase subunit. Cardiovasc Res, 2011, 91: 151–161PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zhong J, Guo D, Chen CB, Wang W, Schuster M, Loibner H, Penninger JM, Scholey JW, Kassiri Z, Oudit GY. Prevention of angiotensin II-mediated renal oxidative stress, inflammation and fibrosis by angiotensin-converting enzyme 2. Hypertension, 2011, 57: 314–322PubMedCrossRefGoogle Scholar
  11. 11.
    Zhong JC, Huang DY, Yang YM, Li YF, Liu GF, Song XH, Du K. Upregulation of angiotensin-converting enzyme 2 by all-trans retinoic acid in spontaneously hypertensive rats. Hypertension, 2004, 44: 907–912PubMedCrossRefGoogle Scholar
  12. 12.
    Zhong J, Basu R, Guo D, Chow FL, Byrns S, Schuster M, Loibner H, Wang XH, Penninger JM, Kassiri Z, Oudit GY. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation, 2010, 122: 717–728PubMedCrossRefGoogle Scholar
  13. 13.
    Song B, Zhang ZZ, Zhong JC, Yu XY, Oudit GY, Jin HY, Lu L, Xu YL, Kassiri Z, Shen WF, Gao PJ, Zhu DL. Loss of angiotensin-converting enzyme 2 exacerbates myocardial injury via activation of the CTGF-fractalkine signaling pathway. Circ J, 2013, 77: 2997–3006PubMedCrossRefGoogle Scholar
  14. 14.
    Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem, 2002, 277: 14838–14843PubMedCrossRefGoogle Scholar
  15. 15.
    Patel VB, Putko B, Wang Z, Zhong JC, Oudit GY. Manipulating angiotensin metabolism with angiotensin converting enzyme 2 (ACE2) in heart failure. Drug Discov Today: Therapeutic Strategies, 2014, 9: e141–148Google Scholar
  16. 16.
    Kassiri Z, Zhong J, Guo D, Basu R, Wang X, Liu PP, Scholey JW, Penninger JM, Oudit GY. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ Heart Fail, 2009, 2: 446–455PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang ZZ, Shang QH, Jin HY, Song B, Oudit GY, Lu L, Zhou T, Xu YL, Gao PJ, Zhu DL, Penninger JM, Zhong JC. Cardiac protective effects of irbesartan via the PPAR-gamma signaling pathway in angiotensin-converting enzyme 2-deficient mice. J Transl Med, 2013, 11: 229PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res, 2000, 87: E1–9PubMedCrossRefGoogle Scholar
  19. 19.
    Patel VB, Bodiga S, Fan D, Das SK, Wang Z, Wang W, Basu R, Zhong J, Kassiri Z, Oudit GY. Cardioprotective effects mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin 1–7 in experimental heart failure in angiotensin-converting enzyme 2-null mice. Hypertension, 2012, 59: 1195–1203PubMedCrossRefGoogle Scholar
  20. 20.
    Tikellis C, Bernardi S, Burns WC. Angiotensin-converting enzyme 2 is a key modulator of the renin-angiotensin system in cardiovascular and renal disease. Curr Opin Nephrol Hypertens, 2011, 20: 62–68PubMedCrossRefGoogle Scholar
  21. 21.
    Brosnihan KB, Li P, Tallant EA, Ferrario CM. Angiotensin-(1–7): a novel vasodilator of the coronary circulation. Biol Res, 1998, 31: 227–234PubMedGoogle Scholar
  22. 22.
    Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol, 2007, 292: C82–97PubMedCrossRefGoogle Scholar
  23. 23.
    Thomas MC, Burns WC, Cooper ME. Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis, 2005, 12: 177–186PubMedCrossRefGoogle Scholar
  24. 24.
    Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, Castellano RK, Ostrov DA, Oh SP, Katovich MJ, Raizada MK. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med, 2009, 179: 1048–1054PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Strawn WB, Ferrario CM, Tallant EA. Angiotensin-(1–7) reduces smooth muscle growth after vascular injury. Hypertension, 1999, 33:207–211PubMedCrossRefGoogle Scholar
  26. 26.
    Landon EJ, Inagami T. Beyond the G protein: the saga of the type 2 angiotensin II receptor. Arterioscler Thromb Vasc Biol, 2005, 25: 15–16PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang R, Wu Y, Zhao M, Liu C, Zhou L, Shen S, Liao S, Yang K, Li Q, Wan H. Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2009, 297: L631–640PubMedCrossRefGoogle Scholar
  28. 28.
    Touyz RM. Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid Redox Signal, 2005, 7: 1302–1314PubMedCrossRefGoogle Scholar
  29. 29.
    Nishimura K, Li W, Hoshino Y, Kadohama T, Asada H, Ohgi S, Sumpio BE. Role of AKT in cyclic strain-induced endothelial cell proliferation and survival. Am J Physiol Cell Physiol, 2006, 290: C812–821PubMedCrossRefGoogle Scholar
  30. 30.
    Hayashi N, Yamamoto K, Ohishi M, Tatara Y, Takeya Y, Shiota A, Oguro R, Iwamoto Y, Takeda M, Rakugi H. The counterregulating role of ACE2 and ACE2-mediated angiotensin 1–7 signaling against angiotensin II stimulation in vascular cells. Hypertens Res, 2010, 33: 1182–1185PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang C, Zhao YX, Zhang YH, Zhu L, Deng BP, Zhou ZL, Li SY, Lu XT, Song LL, Lei XM, Tang WB, Wang N, Pan CM, Song HD, Liu CX, Dong B, Zhang Y, Cao Y. Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. Proc Natl Acad Sci USA, 2010, 107: 15886–15891PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Caglayan E, Romeo GR, Kappert K, Odenthal M, Südkamp M, Body SC, Shernan SK, Hackbusch D, Vantler M, Kazlauskas A, Rosenkranz S. Profilin-1 is expressed in human atherosclerotic plaques and induces atherogenic effects on vascular smooth muscle cells. PLoS ONE, 2010, 5: e13608PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cheng JF, Ni GH, Chen MF, Li YJ, Wang YJ, Wang CL, Yuan Q, Shi RZ, Hu CP, Yang TL. Involvement of profilin-1 in angiotensin II-induced vascular smooth muscle cell proliferation. Vascul Pharmacol, 2011, 55: 34–41PubMedCrossRefGoogle Scholar
  34. 34.
    Elnakish MT, Hassanain HH, Janssen PM. Vascular remodeling-associated hypertension leads to left ventricular hypertrophy and contractile dysfunction in profilin-1 transgenic mice. J Cardiovasc Pharmacol, 2012, 60: 544–552PubMedCrossRefGoogle Scholar
  35. 35.
    Moustafa-Bayoumi M, Alhaj MA, El-Sayed O, Wisel S, Chotani MA, Abouelnaga ZA, Hassona MD, Rigatto K, Morris M, Nuovo G, Zweier JL, Goldschmidt-Clermont P, Hassanain H. Vascular hypertrophy and hypertension caused by transgenic overexpression of profilin 1. J Biol Chem, 2007, 282: 37632–37639PubMedCrossRefGoogle Scholar
  36. 36.
    Kim S, Zhan Y, Izumi Y, Yasumoto H, Yano M, Iwao H. In vivo activation of rat aortic platelet-derived growth factor and epidermal growth factor receptors by angiotensin II and hypertension. Arterioscler Thromb Vasc Biol, 2000, 20: 2539–2545PubMedCrossRefGoogle Scholar
  37. 37.
    Jaiswal N, Jaiswal RK, Tallant EA, Diz DI, Ferrario CM. Alterations in prostaglandin production in spontaneously hypertensive rat smooth muscle cells. Hypertension, 1993, 21: 900–905PubMedCrossRefGoogle Scholar
  38. 38.
    Igase M, Strawn WB, Gallagher PE, Geary RL, Ferrario CM. Angiotensin II AT1 receptors regulate ACE2 and angiotensin-(1–7) expression in the aorta of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol, 2005, 289: H1013–1019PubMedCrossRefGoogle Scholar
  39. 39.
    Ohshima K, Mogi M, Nakaoka H, Iwanami J, Min LJ, Kanno H, Tsukuda K, Chisaka T, Bai HY, Wang XL, Ogimoto A, Higaki J, Horiuchi M. Possible role of angiotensin-converting enzyme 2 and activation of angiotensin II type 2 receptor by angiotensin-(1–7) in improvement of vascular remodeling by angiotensin II type 1 receptor blockade. Hypertension, 2014, 63: e53–59PubMedCrossRefGoogle Scholar
  40. 40.
    Griendling KK, Sorescu D, Lassègue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol, 2000, 20: 2175–2183PubMedCrossRefGoogle Scholar
  41. 41.
    Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond), 2007, 112: 417–428CrossRefGoogle Scholar
  42. 42.
    Nguyen Dinh Cat A, Touyz RM. Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep, 2011, 13: 122–128PubMedCrossRefGoogle Scholar
  43. 43.
    Fraga-Silva RA, Costa-Fraga FP, Murça TM, Moraes PL, Martins Lima A, Lautner RQ, Castro CH, Soares CM, Borges CL, Nadu AP, Oliveira ML, Shenoy V, Katovich MJ, Santos RA, Raizada MK, Ferreira AJ. Angiotensin-converting enzyme 2 activation improves endothelial function. Hypertension, 2013, 61: 1233–1238PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Romeo GR, Moulton KS, Kazlauskas A. Attenuated expression of profilin-1 confers protection from atherosclerosis in the LDL receptor null mouse. Circ Res, 2007, 101: 357–367PubMedCrossRefGoogle Scholar
  45. 45.
    Lo J, Patel VB, Wang Z, Levasseur J, Kaufman S, Penninger JM, Oudit GY. Angiotensin-converting enzyme 2 antagonizes angiotensin II-induced pressor response and NADPH oxidase activation in Wistar-Kyoto rats and spontaneously hypertensive rats. Exp Physiol, 2013, 98: 109–122PubMedCrossRefGoogle Scholar
  46. 46.
    Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1–7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol, 2005, 289: H1560–1566PubMedCrossRefGoogle Scholar
  47. 47.
    Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM. Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension, 2007, 49: 185–192PubMedCrossRefGoogle Scholar
  48. 48.
    Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol, 2000, 20: 645–651PubMedCrossRefGoogle Scholar
  49. 49.
    Ruiz-Ortega M, Lorenzo O, Rupérez M, Esteban V, Suzuki Y, Mezzano S, Plaza JJ, Egido J. Role of the renin-angiotensin system in vascular diseases: expanding the field. Hypertension, 2001, 38: 1382–1387PubMedCrossRefGoogle Scholar
  50. 50.
    Sahara M, Ikutomi M, Morita T, Minami Y, Nakajima T, Hirata Y, Nagai R, Sata M. Deletion of angiotensin-converting enzyme 2 promotes the development of atherosclerosis and arterial neointima formation. Cardiovasc Res, 2014, 101: 236–246PubMedCrossRefGoogle Scholar
  51. 51.
    Jiang T, Gao L, Guo J, Lu J, Wang Y, Zhang Y. Suppressing inflammation by inhibiting the NF-κB pathway contributes to the neuroprotective effect of angiotensin-(1–7) in rats with permanent cerebral ischaemia. Br J Pharmacol, 2012, 167: 1520–1532PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    da Silveira KD, Coelho FM, Vieira AT, Sachs D, Barroso LC, Costa VV, Bretas TL, Bader M, de Sousa LP, da Silva TA, dos Santos RA, Simões e Silva AC, Teixeira MM. Anti-inflammatory effects of the activation of the angiotensin-(1–7) receptor, MAS, in experimental models of arthritis. J Immunol, 2010, 185: 5569–5576PubMedCrossRefGoogle Scholar
  53. 53.
    Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol, 2013, 169: 477–492PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Thomas MC, Pickering RJ, Tsorotes D, Koitka A, Sheehy K, Bernardi S, Toffoli B, Nguyen-Huu TP, Head GA, Fu Y, Chin-Dusting J, Cooper ME, Tikellis C. Genetic Ace2 deficiency accentuates vascular inflammation and atherosclerosis in the ApoE knockout mouse. Circ Res, 2010, 107: 888–897PubMedCrossRefGoogle Scholar
  55. 55.
    Tieu BC, Ju X, Lee C, Sun H, Lejeune W, Recinos A 3rd, Brasier AR, Tilton RG. Aortic adventitial fibroblasts participate in angiotensin-induced vascular wall inflammation and remodeling. J Vasc Res, 2011, 48: 261–272PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Guo YJ, Li WH, Wu R, Xie Q, Cui LQ. ACE2 overexpression inhibits angiotensin II-induced monocyte chemoattractant protein-1 expression in macrophages. Arch Med Res, 2008, 39: 149–154PubMedCrossRefGoogle Scholar
  57. 57.
    Wang M, Zhang J, Walker SJ, Dworakowski R, Lakatta EG, Shah AM. Involvement of NADPH oxidase in age-associated cardiac remodeling. J Mol Cell Cardiol, 2010, 48: 765–772PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kuba K, Imai Y, Penninger JM. Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases. Circ J, 2013, 77: 301–308PubMedCrossRefGoogle Scholar
  59. 59.
    Ebrahimian T, Li MW, Lemarié CA, Simeone SM, Pagano PJ, Gaestel M, Paradis P, Wassmann S, Schiffrin EL. Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress. Hypertension, 2011, 57: 245–254PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Leask A. Potential therapeutic targets for cardiac fibrosis: TGF-beta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res, 2010, 106: 1675–1680PubMedCrossRefGoogle Scholar
  61. 61.
    Polte TR, Naftilan AJ, Hanks SK. Focal adhesion kinase is abundant in developing blood vessels and elevation of its phosphotyrosine content in vascular smooth muscle cells is a rapid response to angiotensin II. J Cell Biochem, 1994, 55: 106–119PubMedCrossRefGoogle Scholar
  62. 62.
    Rose P, Bond J, Tighe S, Toth MJ, Wellman TL, Briso de Montiano EM, Lewinter MM, Lounsbury KM. Genes overexpressed in cerebral arteries following salt-induced hypertensive diseases are regulated by angiotensin II, JunB, and CREB. Am J Physiol Heart Circ Physiol, 2008, 294: H1075–1085PubMedCrossRefGoogle Scholar
  63. 63.
    Santos RA, Castro CH, Gava E, Pinheiro SV, Almeida AP, Paula RD, Cruz JS, Ramos AS, Rosa KT, Irigoyen MC, Bader M, Alenina N, Kitten GT, Ferreira AJ. Impairment of in vitro and in vivo heart function in angiotensin-(1–7) receptor MAS knockout mice. Hypertension, 2006, 47: 996–1002PubMedCrossRefGoogle Scholar
  64. 64.
    Tesanovic S, Vinh A, Gaspari TA, Casley D, Widdop RE. Vasoprotective and atheroprotective effects of angiotensin (1–7) in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 2010, 30: 1606–1613PubMedCrossRefGoogle Scholar
  65. 65.
    Faria-Silva R, Duarte FV, Santos RA. Short-term angiotensin(1–7) receptor MAS stimulation improves endothelial function in normotensive rats. Hypertension, 2005, 46: 948–952PubMedCrossRefGoogle Scholar
  66. 66.
    Patel VB, Zhong JC, Fan D, Basu R, Morton JS, Parajuli N, McMurtry MS, Davidge ST, Kassiri Z, Oudit GY. Aangiotensin-converting enzyme 2 is a critical determinant of angiotensin II-induced loss of vascular smooth muscle cells and adverse vascular remodeling. Hypertension, 2014, 64: 157–164PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • ZhenZhou Zhang
    • 1
    • 2
  • LaiJiang Chen
    • 1
    • 2
  • JiuChang Zhong
    • 1
    • 2
  • PingJin Gao
    • 1
    • 2
  • Gavin Y. Oudit
    • 3
  1. 1.State Key Laboratory of Medical GenomicsRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Shanghai Key Laboratory of HypertensionShanghai Institute of HypertensionShanghaiChina
  3. 3.Department of MedicineUniversity of Alberta, Mazankowski Alberta Heart InstituteEdmontonCanada

Personalised recommendations