Advertisement

Science China Life Sciences

, Volume 57, Issue 8, pp 852–857 | Cite as

A bioinformatics method for predicting long noncoding RNAs associated with vascular disease

  • JianWei Li
  • Cheng Gao
  • YuChen Wang
  • Wei Ma
  • Jian Tu
  • JunPei Wang
  • ZhenZhen Chen
  • Wei Kong
  • QingHua Cui
Open Access
Research Paper Thematic Issue: Vascular Homeostasis and Injury-Reconstruction

Abstract

Long noncoding RNAs (lncRNAs) play important roles in human diseases including vascular disease. Given the large number of lncRNAs, however, whether the majority of them are associated with vascular disease remains unknown. For this purpose, here we present a genomic location based bioinformatics method to predict the lncRNAs associated with vascular disease. We applied the presented method to globally screen the human lncRNAs potentially involved in vascular disease. As a result, we predicted 3043 putative vascular disease associated lncRNAs. To test the accuracy of the method, we selected 10 lncRNAs predicted to be implicated in proliferation and migration of vascular smooth muscle cells (VSMCs) for further experimental validation. The results confirmed that eight of the 10 lncRNAs (80%) are validated. This result suggests that the presented method has a reliable prediction performance. Finally, the presented bioinformatics method and the predicted vascular disease associated lncRNAs together may provide helps for not only better understanding of the roles of lncRNAs in vascular disease but also the identification of novel molecules for the diagnosis and therapy of vascular disease.

Keywords

vascular disease lncRNAs bioinformatics 

References

  1. 1.
    Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M. Global identification of human transcribed sequences with genome tiling arrays. Science, 2004, 306: 2242–2246PubMedCrossRefGoogle Scholar
  2. 2.
    Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 2007, 316: 1484–1488PubMedCrossRefGoogle Scholar
  3. 3.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136: 629–641PubMedCrossRefGoogle Scholar
  4. 4.
    Schonrock N, Harvey RP, Mattick JS. Long noncoding RNAs in cardiac development and pathophysiology. Circ Res, 2012, 111: 1349–1362PubMedCrossRefGoogle Scholar
  5. 5.
    Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell, 2013, 152: 570–583PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long noncoding RNAs and the genetics of cancer. Br J Cancer, 2013, 108: 2419–2425PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res, 2013, 41: D983–986PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends in cell biology, 2011, 21: 354–361PubMedCrossRefGoogle Scholar
  9. 9.
    Roberts A. Vascular disease: disparities in treatment and mortality from ruptured AAA between england and the USA. Nat Rev Cardiol, 2014, 11: 247PubMedCrossRefGoogle Scholar
  10. 10.
    Sun L, Luo H, Liao Q, Bu D, Zhao G, Liu C, Liu Y, Zhao Y. Systematic study of human long intergenic non-coding RNAs and their impact on cancer. Sci China Life Sci, 2013, 56: 324–334PubMedCrossRefGoogle Scholar
  11. 11.
    Liu MX, Chen X, Chen G, Cui QH, Yan GY. A computational framework to infer human disease-associated long noncoding RNAs. PLoS ONE, 2014, 9: e84408PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chen X, Yan GY. Novel human lncRNA-disease association inference based on lncRNA expression profiles. Bioinformatics, 2013, 29: 2617–2624PubMedCrossRefGoogle Scholar
  13. 13.
    Yang X, Gao L, Guo X, Shi X, Wu H, Song F, Wang B. A network based method for analysis of lncRNA-disease associations and prediction of lncRNAs implicated in diseases. PLoS ONE, 2014, 9: e87797PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Chen G, Qiu C, Zhang Q, Liu B, Cui Q. Genome-wide analysis of human SNPs at long intergenic noncoding RNAs. Hum Mutat, 2013, 34: 338–344PubMedCrossRefGoogle Scholar
  15. 15.
    Wang D, Wang J, Lu M, Song F, Cui Q. Inferring the human microrna functional similarity and functional network based on microRNA-associated diseases. Bioinformatics, 2010, 26: 1644–1650PubMedCrossRefGoogle Scholar
  16. 16.
    Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q. An analysis of human microRNA and disease associations. PLoS ONE, 2008, 3: e3420PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, Vandesompele J, Mestdagh P. LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res, 2013, 41: D246–251PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Becker KG, Barnes KC, Bright TJ, Wang SA. The genetic association database. Nat Genet, 2004, 36: 431–432PubMedCrossRefGoogle Scholar
  19. 19.
    Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res, 2014, 42: D1001–1006PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ. The ucsc table browser data retrieval tool. Nucleic Acids Res, 2004, 32: D493–496PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Ann Rev Physiol, 2012, 74: 13–40CrossRefGoogle Scholar
  22. 22.
    Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 2004, 84: 767–801PubMedCrossRefGoogle Scholar
  23. 23.
    Wang L, Zheng J, Bai X, Liu B, Liu CJ, Xu Q, Zhu Y, Wang N, Kong W, Wang X. Adamts-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res, 2009, 104: 688–698PubMedCrossRefGoogle Scholar
  24. 24.
    Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol, 1971, 50: 172–186PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Aryal B, Rotllan N, Fernandez-Hernando C. Noncoding RNAs and atherosclerosis. Curr Atheroscler Rep, 2014, 16: 407PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Leung A, Trac C, Jin W, Lanting L, Akbany A, Saetrom P, Schones DE, Natarajan R. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res, 2013, 113: 266–278PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Michalik KM, You X, Manavski Y, Doddaballapur A, Zornig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, Dimmeler S. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res, 2014, 114: 1389–1397PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • JianWei Li
    • 1
    • 2
  • Cheng Gao
    • 3
    • 4
  • YuChen Wang
    • 1
    • 3
    • 4
  • Wei Ma
    • 2
    • 3
    • 4
  • Jian Tu
    • 2
    • 3
    • 4
  • JunPei Wang
    • 2
    • 3
    • 4
  • ZhenZhen Chen
    • 2
    • 3
    • 4
  • Wei Kong
    • 3
    • 4
  • QingHua Cui
    • 2
    • 4
  1. 1.Laboratory of Translational Biomedicine Informatics, School of Computer ScienceHebei University of TechnologyTianjinChina
  2. 2.Department of Biomedical Informatics, School of Basic Medical SciencesPeking UniversityBeijingChina
  3. 3.Department of Physiology and Pathophysiology, School of Basic Medical SciencesPeking UniversityBeijingChina
  4. 4.MOE Key Laboratory of Cardiovascular SciencesPeking UniversityBeijingChina

Personalised recommendations