Science China Life Sciences

, Volume 56, Issue 10, pp 876–885 | Cite as

Function of lncRNAs and approaches to lncRNA-protein interactions

  • JuanJuan Zhu
  • HanJiang Fu
  • YongGe Wu
  • XiaoFei ZhengEmail author
Open Access
Review Special Issue: Non-coding RNAs


Long non-coding RNAs (lncRNAs), which represent a new frontier in molecular biology, play important roles in regulating gene expression at epigenetic, transcriptional and post-transcriptional levels. More and more lncRNAs have been found to play important roles in normal cell physiological activities, and participate in the development of varieties of tumors and other diseases. Previously, we have only been able to determine the function of lncRNAs through multiple mechanisms, including genetic imprinting, chromatin remodeling, splicing regulation, mRNA decay, and translational regulation. Application of technological advances to research into the function of lncRNAs is extremely important. The major tools for exploring lncRNAs include microarrays, RNA sequencing (RNA-seq), Northern blotting, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), RNA interference (RNAi), RNA-binding protein immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), crosslinking-immunopurification (CLIP), and bioinformatic prediction. In this review, we highlight the functions of lncRNAs, and advanced methods to research lncRNA-protein interactions.


lncRNA function RNA-protein interaction 


  1. 1.
    Spizzo R, Almeida M I, Colombatti A, et al. Long non-coding RNAs and cancer: A new frontier of translational research? Oncogene, 2012, 31: 4577–4587PubMedPubMedCentralGoogle Scholar
  2. 2.
    Carninci P, Hayashizaki Y. Noncoding RNA transcription beyond annotated genes. Curr Opin Genet Dev, 2007, 17: 139–144PubMedGoogle Scholar
  3. 3.
    Birney E, Stamatoyannopoulos J A, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the encode pilot project. Nature, 2007, 447: 799–816PubMedGoogle Scholar
  4. 4.
    Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 2007, 316: 1484–1488PubMedGoogle Scholar
  5. 5.
    Carninci P, Kasukawa T, Katayama S, et al. The transcriptional landscape of the mammalian genome. Science, 2005, 309: 1559–1563PubMedGoogle Scholar
  6. 6.
    Tian D, Sun S, Lee J T. The long non-coding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell, 2010, 143: 390–403PubMedPubMedCentralGoogle Scholar
  7. 7.
    Ørom U A, Derrien T, Beringer M, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell, 2010, 143: 46–58PubMedPubMedCentralGoogle Scholar
  8. 8.
    Hung T, Wang Y, Lin M F, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet, 2011, 43: 621–629PubMedPubMedCentralGoogle Scholar
  9. 9.
    Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 142: 409–419Google Scholar
  10. 10.
    Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding rnas in mammals. Nature, 2009, 458: 223–227PubMedPubMedCentralGoogle Scholar
  11. 11.
    Panzitt K, Tschernatsch M M, Guelly C, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology, 2007, 132: 330–342PubMedGoogle Scholar
  12. 12.
    Luo J H, Ren B, Keryanov S, et al. Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology, 2006, 44: 1012–1024PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lin R, Maeda S, Liu C, et al. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene, 2007, 26: 851–858PubMedGoogle Scholar
  14. 14.
    Gupta R A, Shah N, Wang K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464: 1071–1076PubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang J, Liu X, Wu H, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res, 2010, 38: 5366–5383PubMedPubMedCentralGoogle Scholar
  16. 16.
    Mourtada-Maarabouni M, Pickard M R, Hedge V L, et al. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 2009, 28: 195–208PubMedGoogle Scholar
  17. 17.
    Zhao J, Dahle D, Zhou Y, et al. Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab, 2005, 90: 2179–2186PubMedGoogle Scholar
  18. 18.
    Zhang X, Rice K, Wang Y, et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: Isoform structure, expression, and functions. Endocrinology, 2010, 151: 939–947PubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhou Y, Zhong Y, Wang Y, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem, 2007, 282: 24731–24742PubMedGoogle Scholar
  20. 20.
    Pasmant E, Laurendeau I, Heron D, et al. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: Identification of anril, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res, 2007, 67: 3963–3969PubMedGoogle Scholar
  21. 21.
    McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary heart disease. Science, 2007, 316: 1488–1491PubMedPubMedCentralGoogle Scholar
  22. 22.
    Johnson R. Long non-coding RNAs in huntington’s disease neurodegeneration. Neurobiol Dis, 2012, 46: 245–254PubMedGoogle Scholar
  23. 23.
    Brosnan C A, Voinnet O. The long and the short of noncoding RNAs. Curr Opin Cell Biol, 2009, 21: 416–425PubMedGoogle Scholar
  24. 24.
    Erdmann V A, Szymanski M, Hochberg A, et al. Non-coding, mRNA-like RNAs database Y2K. Nucleic Acids Res, 2000, 28: 197–200PubMedPubMedCentralGoogle Scholar
  25. 25.
    Dinger M E, Pang K C, Mercer T R, et al. Nred: A database of long noncoding RNA expression. Nucleic Acids Res, 2009, 37: D122–126PubMedPubMedCentralGoogle Scholar
  26. 26.
    Mituyama T, Yamada K, Hattori E, et al. The functional RNA database 3.0: Databases to support mining and annotation of functional RNAs. Nucleic Acids Res, 2009, 37: D89–92PubMedPubMedCentralGoogle Scholar
  27. 27.
    Amaral P P, Clark M B, Gascoigne D K, et al. lncRNAdb: A reference database for long noncoding RNAs. Nucleic Acids Res, 2011, 39: D146–151PubMedPubMedCentralGoogle Scholar
  28. 28.
    Liao Q, Xiao H, Bu D, et al. NcFANs: A web server for functional annotation of long non-coding RNAs. Nucleic Acids Res, 2011, 39: W118–124PubMedPubMedCentralGoogle Scholar
  29. 29.
    Bu D, Yu K, Sun S, et al. Noncode v3.0: Integrative annotation of long noncoding RNAs. Nucleic Acids Res, 2012, 40: D210–215PubMedPubMedCentralGoogle Scholar
  30. 30.
    Pang K C, Stephen S, Engstrom P G, et al. RNAdb—a comprehensive mammalian noncoding RNA database. Nucleic Acids Res, 2005, 33: D125–130PubMedPubMedCentralGoogle Scholar
  31. 31.
    Pang K C, Stephen S, Dinger M E, et al. RNAdb 2.0-an expanded database of mammalian non-coding RNAs. Nucleic Acids Res, 2007, 35: D178–182PubMedPubMedCentralGoogle Scholar
  32. 32.
    Griffiths-Jones S, Bateman A, Marshall M, et al. Rfam: An RNA family database. Nucleic Acids Res, 2003, 31: 439–441PubMedPubMedCentralGoogle Scholar
  33. 33.
    Griffiths-Jones S, Moxon S, Marshall M, et al. Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids Res, 2005, 33: D121–124PubMedPubMedCentralGoogle Scholar
  34. 34.
    Burge S W, Daub J, Eberhardt R, et al. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res, 2013, 41: D226–232Google Scholar
  35. 35.
    Chen G, Wang Z, Wang D, et al. lncRNAdisease: A database for long-non-coding RNA-associated diseases. Nucleic Acids Res, 2013, 41: D983–986PubMedPubMedCentralGoogle Scholar
  36. 36.
    Yang J H, Li J H, Jiang S, et al. ChiPBase: A database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from chip-seq data. Nucleic Acids Res, 2013, 41: D177–187PubMedPubMedCentralGoogle Scholar
  37. 37.
    Volders P J, Helsens K, Wang X, et al. LNCipedia: A database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res, 2013, 41: D246–251PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ponting C P, Oliver P L, Reik W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136: 629–641PubMedGoogle Scholar
  39. 39.
    Okazaki Y, Furuno M, Kasukawa T, et al. Analysis of the mouse transcriptome based on functional annotation of 60770 full-length cDNAs. Nature, 2002, 420: 563–573PubMedGoogle Scholar
  40. 40.
    Mercer T R, Dinger M E, Mattick J S. Long non-coding RNAs: Insights into functions. Nat Rev Genet, 2009, 10: 155–159PubMedGoogle Scholar
  41. 41.
    Mercer T R, Dinger M E, Sunkin S M, et al. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA, 2008, 105: 716–721PubMedPubMedCentralGoogle Scholar
  42. 42.
    Dinger M E, Pang K C, Mercer T R, et al. Differentiating proteincoding and noncoding RNA: Challenges and ambiguities. PLoS Comput Biol, 2008, 4: e1000176PubMedPubMedCentralGoogle Scholar
  43. 43.
    Sone M, Hayashi T, Tarui H, et al. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci, 2007, 120: 2498–2506PubMedGoogle Scholar
  44. 44.
    Toor N, Keating K S, Pyle A M. Structural insights into RNA splicing. Curr Opin Struct Biol, 2009, 19: 260–266PubMedPubMedCentralGoogle Scholar
  45. 45.
    Lanz R B, Razani B, Goldberg A D, et al. Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc Natl Acad Sci USA, 2002, 99: 16081–16086PubMedPubMedCentralGoogle Scholar
  46. 46.
    Babak T, Blencowe B J, Hughes T R. Considerations in the identification of functional RNA structural elements in genomic alignments. BMC Bioinformatics, 2007, 8: 33PubMedPubMedCentralGoogle Scholar
  47. 47.
    Mathews D H, Sabina J, Zuker M, et al. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol, 1999, 288: 911–940PubMedGoogle Scholar
  48. 48.
    Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 2003, 31: 3406–3415PubMedPubMedCentralGoogle Scholar
  49. 49.
    Sukosd Z, Knudsen B, Kjems J, et al. Ppfold 3.0: Fast RNA secondary structure prediction using phylogeny and auxiliary data. Bioinformatics, 2012, 28: 2691–2692Google Scholar
  50. 50.
    Puton T, Kozlowski L P, Rother K M, et al. CompaRNA: A server for continuous benchmarking of automated methods for RNA secondary structure prediction. Nucleic Acids Res, 2013, 41: 4307–4323PubMedPubMedCentralGoogle Scholar
  51. 51.
    Cao X, Yeo G, Muotri A R, et al. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci, 2006, 29: 77–103PubMedGoogle Scholar
  52. 52.
    Guttman M, Rinn J L. Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482: 339–346PubMedPubMedCentralGoogle Scholar
  53. 53.
    Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol, 2007, 14: 103–105PubMedGoogle Scholar
  54. 54.
    Tsai M C, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329: 689–693PubMedPubMedCentralGoogle Scholar
  55. 55.
    Gong C, Maquat L E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature, 2011, 470: 284–288PubMedPubMedCentralGoogle Scholar
  56. 56.
    Arney K L. H19 and IGF2—enhancing the confusion? Trends Genet, 2003, 19: 17–23PubMedGoogle Scholar
  57. 57.
    Lee J T. The X as model for RNA’s niche in epigenomic regulation. Cold Spring Harb Perspect Biol, 2010, 2: a003749PubMedPubMedCentralGoogle Scholar
  58. 58.
    Stavropoulos N, Lu N, Lee J T. A functional role for Tsix transcription in blocking Xist RNA accumulation but not in X-chromosome choice. Proc Natl Acad Sci USA, 2001, 98: 10232–10237PubMedPubMedCentralGoogle Scholar
  59. 59.
    Yap K L, Li S, Munoz-Cabello A M, et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of ink4a. Mol Cell, 2010, 38: 662–674PubMedPubMedCentralGoogle Scholar
  60. 60.
    Kino T, Hurt D E, Ichijo T, et al. Noncoding RNA GAS5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal, 2010, 3: ra8PubMedPubMedCentralGoogle Scholar
  61. 61.
    Jolly C, Lakhotia S C. Human sat III and Drosophila hsr omega transcripts: A common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res, 2006, 34: 5508–5514PubMedPubMedCentralGoogle Scholar
  62. 62.
    Tripathi V, Ellis J D, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell, 2010, 39: 925–938PubMedPubMedCentralGoogle Scholar
  63. 63.
    Faghihi M A, Modarresi F, Khalil A M, et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med, 2008, 14: 723–730PubMedPubMedCentralGoogle Scholar
  64. 64.
    Tripathi V, Shen Z, Chakraborty A, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-Myb. PLoS Genet, 2013, 9: e1003368PubMedPubMedCentralGoogle Scholar
  65. 65.
    Xu D, Yang F, Yuan JH, et al. Long noncoding RNAs associated with liver regeneration 1 accelerates hepatocyte proliferation during liver regeneration by activating Wnt/beta-catenin signaling. Hepatology, 2013, 58: 739–751PubMedGoogle Scholar
  66. 66.
    Yi F, Yang F, Liu X, et al. RNA-seq identified a super-long intergenic transcript functioning in adipogenesis. RNA Biol, 2013, 10: 991–1002PubMedGoogle Scholar
  67. 67.
    Kretz M, Siprashvili Z, Chu C, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 2013, 493: 231–235PubMedPubMedCentralGoogle Scholar
  68. 68.
    Brannan C I, Dees E C, Ingram R S, et al. The product of the H19 gene may function as an RNA. Mol Cell Biol, 1990, 10: 28–36PubMedPubMedCentralGoogle Scholar
  69. 69.
    Brown C J, Ballabio A, Rupert J L, et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature, 1991, 349: 38–44PubMedGoogle Scholar
  70. 70.
    Lee J T, Davidow L S, Warshawsky D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet, 1999, 21: 400–404PubMedGoogle Scholar
  71. 71.
    Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003, 22: 8031–8041PubMedGoogle Scholar
  72. 72.
    Zhang X, Zhou Y, Mehta K R, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab, 2003, 88: 5119–5126PubMedGoogle Scholar
  73. 73.
    Scaruffi P, Stigliani S, Moretti S, et al. Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma. BMC Cancer, 2009, 9: 441PubMedPubMedCentralGoogle Scholar
  74. 74.
    Carrieri C, Cimatti L, Biagioli M, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 2012, 491: 454–457PubMedGoogle Scholar
  75. 75.
    Johnsson P, Ackley A, Vidarsdottir L, et al. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol, 2013, 20: 440–446PubMedPubMedCentralGoogle Scholar
  76. 76.
    Yoon J H, Abdelmohsen K, Srikantan S, et al. lincRNA-p21 suppresses target mRNA translation. Mol Cell, 2012, 47: 648–655PubMedPubMedCentralGoogle Scholar
  77. 77.
    Pennisi E. Genomics encode project writes eulogy for junk DNA. Science, 2012, 337: 1159, 1161PubMedGoogle Scholar
  78. 78.
    Shen K, Arslan S, Akopian D, et al. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature, 2012, 492: 271–275PubMedPubMedCentralGoogle Scholar
  79. 79.
    Grote P, Wittler L, Hendrix D, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell, 2013, 24: 206–214PubMedPubMedCentralGoogle Scholar
  80. 80.
    Klattenhoff C A, Scheuermann J C, Surface L E, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell, 2013, 152: 570–583PubMedPubMedCentralGoogle Scholar
  81. 81.
    Sun L, Goff L A, Trapnell C, et al. Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA, 2013, 110: 3387–3392PubMedPubMedCentralGoogle Scholar
  82. 82.
    Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495: 333–338PubMedGoogle Scholar
  83. 83.
    Kung J T, Lee J T. RNA in the loop. Dev Cell, 2013, 24: 565–567PubMedPubMedCentralGoogle Scholar
  84. 84.
    Yang L, Lin C, Jin C, et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature, 2013, 500: 598–602PubMedPubMedCentralGoogle Scholar
  85. 85.
    Gibb E A, Brown C J, Lam W L. The functional role of long non-coding RNA in human carcinomas. Mol Cancer, 2011, 10: 38PubMedPubMedCentralGoogle Scholar
  86. 86.
    Kelley R L, Kuroda M I. Noncoding RNA genes in dosage compensation and imprinting. Cell, 2000, 103: 9–12PubMedGoogle Scholar
  87. 87.
    Monk D. Deciphering the cancer imprintome. Brief Funct Genomics, 2010, 9: 329–339PubMedGoogle Scholar
  88. 88.
    Lim D H, Maher E R. Genomic imprinting syndromes and cancer. Adv Genet, 2010, 70: 145–175PubMedGoogle Scholar
  89. 89.
    Bartolomei M S, Zemel S, Tilghman S M. Parental imprinting of the mouse H19 gene. Nature, 1991, 351: 153–155PubMedGoogle Scholar
  90. 90.
    Gabory A, Jammes H, Dandolo L. The H19 locus: Role of an imprinted non-coding RNA in growth and development. Bioessays, 2010, 32: 473–480PubMedGoogle Scholar
  91. 91.
    Hark A T, Schoenherr C J, Katz D J, et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/IGF2 locus. Nature, 2000, 405: 486–489PubMedGoogle Scholar
  92. 92.
    Schoenherr C J, Levorse J M, Tilghman S M. CTCF maintains differential methylation at the IGF2/H19 locus. Nat Genet, 2003, 33: 66–69PubMedGoogle Scholar
  93. 93.
    Zhao J, Sun B K, Erwin J A, et al. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 2008, 322: 750–756PubMedPubMedCentralGoogle Scholar
  94. 94.
    Wutz A, Rasmussen T P, Jaenisch R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet, 2002, 30: 167–174PubMedGoogle Scholar
  95. 95.
    Saxena A, Carninci P. Long non-coding RNA modifies chromatin: Epigenetic silencing by long non-coding RNAs. Bioessays, 2011, 33: 830–839PubMedPubMedCentralGoogle Scholar
  96. 96.
    Pandey R R, Mondal T, Mohammad F, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell, 2008, 32: 232–246PubMedGoogle Scholar
  97. 97.
    Rinn J L, Kertesz M, Wang J K, et al. Functional demarcation of active and silent chromatin domains in human hox loci by noncoding RNAs. Cell, 2007, 129: 1311–1323PubMedPubMedCentralGoogle Scholar
  98. 98.
    Khalil A M, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 2009, 106: 11667–11672PubMedPubMedCentralGoogle Scholar
  99. 99.
    Nagano T, Mitchell J A, Sanz L A, et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science, 2008, 322: 1717–1720PubMedGoogle Scholar
  100. 100.
    Umlauf D, Goto Y, Cao R, et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of polycomb group complexes. Nat Genet, 2004, 36: 1296–1300PubMedGoogle Scholar
  101. 101.
    Kaneko S, Li G, Son J, et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev, 2010, 24: 2615–2620PubMedPubMedCentralGoogle Scholar
  102. 102.
    Terranova R, Yokobayashi S, Stadler M B, et al. Polycomb group proteins EZH2 and RNF2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell, 2008, 15: 668–679PubMedGoogle Scholar
  103. 103.
    Sleutels F, Zwart R, Barlow D P. The non-coding air RNA is required for silencing autosomal imprinted genes. Nature, 2002, 415: 810–813PubMedGoogle Scholar
  104. 104.
    Shin J Y, Fitzpatrick G V, Higgins M J. Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J, 2008, 27: 168–178PubMedPubMedCentralGoogle Scholar
  105. 105.
    Hayami S, Kelly J D, Cho H S, et al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int J Cancer, 2011, 128: 574–586PubMedGoogle Scholar
  106. 106.
    Schneider C, King R M, Philipson L. Genes specifically expressed at growth arrest of mammalian cells. Cell, 1988, 54: 787–793PubMedGoogle Scholar
  107. 107.
    Dinger M E, Amaral P P, Mercer T R, et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res, 2008, 18: 1433–1445PubMedPubMedCentralGoogle Scholar
  108. 108.
    Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods, 2008, 5: 621–628PubMedGoogle Scholar
  109. 109.
    Ng S Y, Johnson R, Stanton L W. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J, 2012, 31: 522–533PubMedPubMedCentralGoogle Scholar
  110. 110.
    Chisholm K M, Wan Y, Li R, et al. Detection of long non-coding RNA in archival tissue: Correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS ONE, 2012, 7: e47998PubMedPubMedCentralGoogle Scholar
  111. 111.
    Tahira A C, Kubrusly M S, Faria M F, et al. Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol Cancer, 2011, 10: 141PubMedPubMedCentralGoogle Scholar
  112. 112.
    Yang F, Zhang L, Huo X S, et al. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of Zeste homolog 2 in humans. Hepatology, 2011, 54: 1679–1689PubMedGoogle Scholar
  113. 113.
    Sui W, Yan Q, Li H, et al. Genome-wide analysis of long noncoding RNA expression in peripheral blood mononuclear cells of uremia patients. J Nephrol, 2012, 26: 731–738PubMedGoogle Scholar
  114. 114.
    Peiffer J A, Kaushik S, Sakai H, et al. A spatial dissection of the arabidopsis floral transcriptome by MPSS. BMC Plant Biol, 2008, 8: 43PubMedPubMedCentralGoogle Scholar
  115. 115.
    Wang Z, Gerstein M, Snyder M. RNA-seq: A revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10: 57–63PubMedPubMedCentralGoogle Scholar
  116. 116.
    Lin M, Pedrosa E, Shah A, et al. RNA-seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS ONE, 2011, 6: e23356PubMedPubMedCentralGoogle Scholar
  117. 117.
    Huang Q, Lin B, Liu H, et al. RNA-seq analyses generate comprehensive transcriptomic landscape and reveal complex transcript patterns in hepatocellular carcinoma. PLoS ONE, 2011, 6: e26168PubMedPubMedCentralGoogle Scholar
  118. 118.
    Sun K, Chen X, Jiang P, et al. iSeeRNA: Identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data. BMC Genomics, 2013, 14(Suppl 2): S7PubMedPubMedCentralGoogle Scholar
  119. 119.
    Furuno M, Pang K C, Ninomiya N, et al. Clusters of internally primed transcripts reveal novel long noncoding RNAs. PLoS Genet, 2006, 2: e37PubMedPubMedCentralGoogle Scholar
  120. 120.
    Rudkin G T, Stollar B D. High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature, 1977, 265: 472–473PubMedGoogle Scholar
  121. 121.
    Chureau C, Chantalat S, Romito A, et al. Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet, 2011, 20: 705–718PubMedGoogle Scholar
  122. 122.
    Sasaki Y T, Ideue T, Sano M, et al. MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA, 2009, 106: 2525–2530PubMedPubMedCentralGoogle Scholar
  123. 123.
    Redrup L, Branco M R, Perdeaux E R, et al. The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development, 2009, 136: 525–530PubMedPubMedCentralGoogle Scholar
  124. 124.
    Siomi H, Siomi M C. On the road to reading the RNA-interference code. Nature, 2009, 457: 396–404PubMedGoogle Scholar
  125. 125.
    Brookheart R T, Michel C I, Listenberger L L, et al. The non-coding RNA gadd7 is a regulator of lipid-induced oxidative and endoplasmic reticulum stress. J Biol Chem, 2009, 284: 7446–7454PubMedPubMedCentralGoogle Scholar
  126. 126.
    Chakraborty D, Kappei D, Theis M, et al. Combined RNAi and localization for functionally dissecting long noncoding RNAs. Nat Methods, 2012, 9: 360–362PubMedGoogle Scholar
  127. 127.
    Petersen M, Wengel J. LNA: A versatile tool for therapeutics and genomics. Trends Biotechnol, 2003, 21: 74–81PubMedGoogle Scholar
  128. 128.
    Sarma K, Levasseur P, Aristarkhov A, et al. Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc Natl Acad Sci USA, 2010, 107: 22196–22201PubMedPubMedCentralGoogle Scholar
  129. 129.
    Selth L A, Gilbert C, Svejstrup J Q. RNA immunoprecipitation to determine RNA-protein associations in vivo. Cold Spring Harb Protoc, 2009, 2009: pdb prot5234PubMedGoogle Scholar
  130. 130.
    Jain R, Devine T, George A D, et al. RIP-chip analysis: RNA-binding protein immunoprecipitation-microarray (Chip) profiling. Methods Mol Biol, 2011, 703: 247–263PubMedGoogle Scholar
  131. 131.
    Zhao J, Ohsumi T K, Kung J T, et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell, 2010, 40: 939–953PubMedPubMedCentralGoogle Scholar
  132. 132.
    Chu C, Qu K, Zhong F L, et al. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell, 2011, 44: 667–678PubMedPubMedCentralGoogle Scholar
  133. 133.
    Simon M D, Wang C I, Kharchenko P V, et al. The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci USA, 2011, 108: 20497–20502PubMedPubMedCentralGoogle Scholar
  134. 134.
    Fusco D, Bertrand E, Singer R H. Imaging of single mRNAs in the cytoplasm of living cells. Prog Mol Subcell Biol, 2004, 35: 135–150PubMedGoogle Scholar
  135. 135.
    Raj A, van den Bogaard P, Rifkin S A, et al. Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods, 2008, 5: 877–879PubMedPubMedCentralGoogle Scholar
  136. 136.
    Rinke J, Appel B, Blocker H, et al. The 5′-terminal sequence of U1 RNA complementary to the consensus 5′ splice site of hnRNA is single-stranded in intact U1 snRNP particles. Nucleic Acids Res, 1984, 12: 4111–4126PubMedPubMedCentralGoogle Scholar
  137. 137.
    Lingner J, Hendrick L L, Cech T R. Telomerase RNAs of different ciliates have a common secondary structure and a permuted template. Genes Dev, 1994, 8: 1984–1998PubMedGoogle Scholar
  138. 138.
    Wassarman D A, Steitz J A. Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol Cell Biol, 1991, 11: 3432–3445PubMedPubMedCentralGoogle Scholar
  139. 139.
    Jensen K B, Darnell R B. CLIP: Crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol Biol, 2008, 488: 85–98PubMedPubMedCentralGoogle Scholar
  140. 140.
    Ule J, Jensen K, Mele A, et al. CLIP: A method for identifying protein-RNA interaction sites in living cells. Methods, 2005, 37: 376–386PubMedGoogle Scholar
  141. 141.
    Ule J, Jensen K B, Ruggiu M, et al. CLIP identifies Nova-regulated RNA networks in the brain. Science, 2003, 302: 1212–1215PubMedGoogle Scholar
  142. 142.
    Yeo G W, Coufal N G, Liang T Y, et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol, 2009, 16: 130–137PubMedPubMedCentralGoogle Scholar
  143. 143.
    Licatalosi D D, Mele A, Fak J J, et al. HITS-CLIP yields genomewide insights into brain alternative RNA processing. Nature, 2008, 456: 464–469PubMedPubMedCentralGoogle Scholar
  144. 144.
    Hafner M, Landthaler M, Burger L, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 2010, 141: 129–141PubMedPubMedCentralGoogle Scholar
  145. 145.
    Konig J, Zarnack K, Rot G, et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol, 2010, 17: 909–915PubMedPubMedCentralGoogle Scholar
  146. 146.
    Wolf J J, Dowell R D, Mahony S, et al. Feed-forward regulation of a cell fate determinant by an RNA-binding protein generates asymmetry in yeast. Genetics, 2010, 185: 513–522PubMedPubMedCentralGoogle Scholar
  147. 147.
    Chi S W, Zang J B, Mele A, et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 2009, 460: 479–486PubMedPubMedCentralGoogle Scholar
  148. 148.
    Yang J H, Li J H, Shao P, et al. Starbase: A database for exploring microRNA-mRNA interaction maps from argonaute CLIP-seq and degradome-seq data. Nucleic Acids Res, 2011, 39: D202–209PubMedPubMedCentralGoogle Scholar
  149. 149.
    Khorshid M, Rodak C, Zavolan M. CLIPZ: A database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res, 2011, 39: D245–252PubMedPubMedCentralGoogle Scholar
  150. 150.
    Liao Q, Liu C, Yuan X, et al. Large-scale prediction of long noncoding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res, 2011, 39: 3864–3878PubMedPubMedCentralGoogle Scholar
  151. 151.
    Bellucci M, Agostini F, Masin M, et al. Predicting protein associations with long noncoding RNAs. Nat Methods, 2011, 8: 444–445PubMedGoogle Scholar
  152. 152.
    Anders G, Mackowiak S D, Jens M, et al. DoRiNA: A database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res, 2012, 40: D180–186PubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • JuanJuan Zhu
    • 1
    • 2
  • HanJiang Fu
    • 1
  • YongGe Wu
    • 2
  • XiaoFei Zheng
    • 1
    Email author
  1. 1.Institute of Radiation MedicineAcademy of Military Medical SciencesBeijingChina
  2. 2.College of Life SciencesJilin UniversityChangchunChina

Personalised recommendations