Science China Life Sciences

, Volume 56, Issue 9, pp 767–779 | Cite as

On brain activity mapping: insights and lessons from Brain Decoding Project to map memory patterns in the hippocampus

  • Joe Z. Tsien
  • Meng Li
  • Remus Osan
  • GuiFen Chen
  • LongNian Lin
  • Phillip Lei Wang
  • Sabine Frey
  • Julietta Frey
  • DaJiang Zhu
  • TianMing Liu
  • Fang Zhao
  • Hui Kuang
Open Access
Cover Article

Abstract

The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.

Keywords

BRAIN project Brain Decoding Project brain activity map learning and memory episodic memory semantic knowledge imagination concepts fear conditioning 

References

  1. 1.
    Hebb D O. The Organization of Behavior. New York: Wiley, 1949Google Scholar
  2. 2.
    Wigstrom H, Gustafsson B. On long-lasting potentiation in the hippocampus: a proposed mechanism for its dependence on coincident pre- and postsynaptic activity. Acta Physiol Scand, 1985, 123: 519–522PubMedCrossRefGoogle Scholar
  3. 3.
    Bliss T V, Collingridge G L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993, 361: 31–39PubMedCrossRefGoogle Scholar
  4. 4.
    Malenka R C, Nicoll R A. Long-term potentiation-a decade of progress? Science, 1999, 285: 1870–1874PubMedCrossRefGoogle Scholar
  5. 5.
    Bi G, Poo M. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci, 2001, 24: 139–166PubMedCrossRefGoogle Scholar
  6. 6.
    Tsien J Z. Building a brainier mouse. Sci Am, 2000, 282: 62–68PubMedCrossRefGoogle Scholar
  7. 7.
    Abbott L F, Sejnowski T J. Neural Codes and Distributed Representations: Foundations of Neural Computation. Cambridge: Mit Press, 1999Google Scholar
  8. 8.
    Shamir M, Sompolinsky H. Nonlinear population codes. Neural Comput, 2004, 16: 1105–1136PubMedCrossRefGoogle Scholar
  9. 9.
    Sanger T D. Neural population codes. Curr Opin Neurobiol, 2003, 13: 238PubMedCrossRefGoogle Scholar
  10. 10.
    Adrian E D. The impulses produced by sensory nerve endings part i. J Physiol, 1926, 61: 49–72PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Gross C G, Rocha-Miranda C E, Bender D B. Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol, 1972, 35: 96–111PubMedGoogle Scholar
  12. 12.
    Fuster J M. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol, 1973, 36: 61-78PubMedGoogle Scholar
  13. 13.
    Thompson R F. In search of memory traces. Annu Rev Psychol, 2005, 56: 1–23PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou Y D, Fuster J M. Mnemonic neuronal activity in somatosensory cortex. Proc Natl Acad Sci USA, 1996, 93: 10533–10537PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bialek W, Rieke F. Reliability and information transmission in spiking neurons. Trends Neurosci, 1992, 15: 428–434PubMedCrossRefGoogle Scholar
  16. 16.
    Lestienne R. Spike timing, synchronization and information processing on the sensory side of the central nervous system. Prog Neurobiol, 2001, 65: 545–591PubMedCrossRefGoogle Scholar
  17. 17.
    Lin L, Osan R, Tsien J Z. Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. Trends Neurosci, 2006, 29: 48–57PubMedCrossRefGoogle Scholar
  18. 18.
    Eskandar E N, Richmond B J, Optican L M. Role of inferior temporal neurons in visual memory. I. Temporal encoding of information about visual images, recalled images, and behavioral context. J Neurophysiol, 1992, 68: 1277–1295PubMedGoogle Scholar
  19. 19.
    Miller E K, Li L, Desimone R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J Neurosci, 1993, 13: 1460–1478PubMedGoogle Scholar
  20. 20.
    Gochin P M, Colombo M, Dorfman G A, et al. Neural ensemble coding in inferior temporal cortex. J Neurophysiol, 1994, 71: 2325–2337PubMedGoogle Scholar
  21. 21.
    Schmidt E M. Electrodes for many single neuron recordings. Methods Neural Ensemble Record, 1999, 1-23Google Scholar
  22. 22.
    McNaughton B L, O’Keefe J, Barnes C A. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods, 1983, 8: 391–397PubMedCrossRefGoogle Scholar
  23. 23.
    Buzsaki G. Large-scale recording of neuronal ensembles. Nat Neurosci, 2004, 7: 446–451PubMedCrossRefGoogle Scholar
  24. 24.
    Harris K D, Henze D A, Csicsvari J, et al. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol, 2000, 84: 401–414PubMedGoogle Scholar
  25. 25.
    Georgopoulos A P, Schwartz A B, Kettner R E. Neuronal population coding of movement direction. Science, 1986, 233: 1416–1419PubMedCrossRefGoogle Scholar
  26. 26.
    Velliste M, Perel S, Spalding M C, et al. Cortical control of a prosthetic arm for self-feeding. Nature, 2008, 453: 1098–1101PubMedCrossRefGoogle Scholar
  27. 27.
    Musallam S, Corneil B D, Greger B, et al. Cognitive control signals for neural prosthetics. Science, 2004, 305: 258–262PubMedCrossRefGoogle Scholar
  28. 28.
    Nicolelis M A, Ribeiro S. Seeking the neural code. Sci Am, 2006, 295: 70–77PubMedCrossRefGoogle Scholar
  29. 29.
    Donoghue J P. Bridging the brain to the world: a perspective on neural interface systems. Neuron, 2008, 60: 511–521PubMedCrossRefGoogle Scholar
  30. 30.
    O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res, 1971, 34: 171–175PubMedCrossRefGoogle Scholar
  31. 31.
    O’Keefe J, Nadel L. The Hippocampus as a Cognitive Map. Oxford: Clarendon Press, 1978Google Scholar
  32. 32.
    Wilson M A, McNaughton B L. Dynamics of the hippocampal ensemble code for space. Science, 1993, 261: 1055–1058PubMedCrossRefGoogle Scholar
  33. 33.
    Redish A D. The hippocampal debate: are we asking the right questions? Behav Brain Res, 2001, 127: 81–98PubMedCrossRefGoogle Scholar
  34. 34.
    Kentros C. Hippocampal place cells: the “where” of episodic memory? Hippocampus, 2006, 16: 743–754PubMedCrossRefGoogle Scholar
  35. 35.
    Mizumori S J. Hippocampal place fields: a neural code for episodic memory? Hippocampus, 2006, 16: 685–690PubMedCrossRefGoogle Scholar
  36. 36.
    Smith D M, Mizumori S J. Hippocampal place cells, context, and episodic memory. Hippocampus, 2006, 16: 716–729PubMedCrossRefGoogle Scholar
  37. 37.
    Oler J A, Penley S C, Sava S, et al. Does the dorsal hippocampus process navigational routes or behavioral context? A single-unit analysis. Eur J Neurosci, 2008, 28: 802–812PubMedCrossRefGoogle Scholar
  38. 38.
    Tsien J Z, Chen D F, Gerber D, et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell, 1996, 87: 1317–1326PubMedCrossRefGoogle Scholar
  39. 39.
    Tsien J Z, Huerta P T, Tonegawa S. The essential role of hippocampal ca1 nmda receptor-dependent synaptic plasticity in spatial memory. Cell, 1996, 87: 1327–1338PubMedCrossRefGoogle Scholar
  40. 40.
    Tang Y P, Shimizu E, Dube G R, et al. Genetic enhancement of learning and memory in mice. Nature, 1999, 401: 63–69PubMedCrossRefGoogle Scholar
  41. 41.
    Shimizu E, Tang Y P, Rampon C, et al. Nmda receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science, 2000, 290: 1170–1174PubMedCrossRefGoogle Scholar
  42. 42.
    Cui Z, Wang H, Tan Y, et al. Inducible and reversible nr1 knockout reveals crucial role of the nmda receptor in preserving remote memories in the brain. Neuron, 2004, 41: 781–793PubMedCrossRefGoogle Scholar
  43. 43.
    Cao X, Wang H, Mei B, et al. Inducible and selective erasure of memories in the mouse brain via chemical-genetic manipulation. Neuron, 2008, 60: 353–366PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Wang L P, Li F, Wang D, et al. Nmda receptors in dopaminergic neurons are crucial for habit learning. Neuron, 2011, 72: 1055–1066PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tsien J Z. The memory code. Sci Am, 2007, 297: 52–59PubMedCrossRefGoogle Scholar
  46. 46.
    Alivisatos A P, Chun M, Church G M, et al. The brain activity map project and the challenge of functional connectomics. Neuron, 2012, 74: 970–974PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mitra P. What’s wrong with the brain activity map proposal. Sci Am, 2013, http://www.scientificamerican.com/article.cfm?id=whats-wrong-Google Scholar
  48. 48.
    with-the-brain-activity-map-proposalGoogle Scholar
  49. 49.
    Somogyi P, Klausberger T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol, 2005, 562: 9–26PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 2008, 321: 53–57PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Freund T F, Buzsaki G. Interneurons of the hippocampus. Hippocampus, 1996, 6: 347–470PubMedCrossRefGoogle Scholar
  52. 52.
    Kuang H, Lin L, Tsien J Z. Temporal dynamics of distinct ca1 cell populations during unconscious state induced by ketamine. PLoS ONE, 2010, 5: e15209PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Klausberger T, Magill P J, Marton L F, et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 2003, 421: 844–848PubMedCrossRefGoogle Scholar
  54. 54.
    Tukker J J, Fuentealba P, Hartwich K, et al. Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo. J Neurosci, 2007, 27: 8184–8189PubMedCrossRefGoogle Scholar
  55. 55.
    Harvey C D, Coen P, Tank D W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature, 2012, 484: 62–68PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ziv Y, Burns L D, Cocker E D, et al. Long-term dynamics of ca1 hippocampal place codes. Nat Neurosci, 2013, 16: 264–266PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Davis M, Hitchcock J M, Rosen J B. Anxiety and the amygdala: pharmacological and anatomical analysis of the fear-potentiated startle paradigm. Psycho Learn Motivat, 1988, 21: 263–305CrossRefGoogle Scholar
  58. 58.
    LeDoux J E. Emotion, memory and the brain. Sci Am, 1994, 270: 50–57PubMedCrossRefGoogle Scholar
  59. 59.
    Clark R E, Squire L R. Classical conditioning and brain systems: the role of awareness. Science, 1998, 280: 77–81PubMedCrossRefGoogle Scholar
  60. 60.
    Maren S. Neurobiology of pavlovian fear conditioning. Annu Rev Neurosci, 2001, 24: 897–931PubMedCrossRefGoogle Scholar
  61. 61.
    Kim J J, Jung M W. Neural circuits and mechanisms involved in pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev, 2006, 30: 188–202PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Clark R E, Zola S. Trace eyeblink classical conditioning in the monkey: a nonsurgical method and behavioral analysis. Behav Neurosci, 1998, 112: 1062–1068PubMedCrossRefGoogle Scholar
  63. 63.
    McEchron M D, Bouwmeester H, Tseng W, et al. Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus, 1998, 8: 638–646PubMedCrossRefGoogle Scholar
  64. 64.
    Knight D C, Cheng D T, Smith C N, et al. Neural substrates mediating human delay and trace fear conditioning. J Neurosci, 2004, 24: 218–228PubMedCrossRefGoogle Scholar
  65. 65.
    Matus-Amat P, Higgins E A, Barrientos R M, et al. The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations. J Neurosci, 2004, 24: 2431–2439PubMedCrossRefGoogle Scholar
  66. 66.
    Chowdhury N, Quinn J J, Fanselow M S. Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice. Behav Neurosci, 2005, 119: 1396–1402PubMedCrossRefGoogle Scholar
  67. 67.
    Biedenkapp J C, Rudy J W. Context preexposure prevents forgetting of a contextual fear memory: implication for regional changes in brain activation patterns associated with recent and remote memory tests. Learn Mem, 2007, 14: 200–203PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lin L, Osan R, Shoham S, et al. Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. Proc Natl Acad Sci USA, 2005, 102: 6125–6130PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lin L, Chen G, Xie K, et al. Large-scale neural ensemble recording in the brains of freely behaving mice. J Neurosci Methods, 2006, 155: 28–38PubMedCrossRefGoogle Scholar
  70. 70.
    Osan R, Zhu L, Shoham S, et al. Subspace projection approaches to classification and visualization of neural network-level encoding patterns. PLoS ONE, 2007, 2: e404PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Chen G, Wang L P, Tsien J Z. Neural population-level memory traces in the mouse hippocampus. PLoS ONE, 2009, 4: e8256PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Tulving E. Episodic and semantic memory. In: Tulving E, Donaldson W, eds. Organization of Memory. New York: Academic Press, 1972. 381–402Google Scholar
  73. 73.
    Squire L R, Zola S M. Episodic memory, semantic memory, and amnesia. Hippocampus, 1998, 8: 205–211PubMedCrossRefGoogle Scholar
  74. 74.
    Cohen N J, Eichenbaum H. Memory, Amnesia, and the Hippocampal System. Cambridge: MIT Press, 1993Google Scholar
  75. 75.
    Kapur N, Friston K J, Young A, et al. Activation of human hippocampal formation during memory for faces: a pet study. Cortex, 1995, 31: 99–108PubMedCrossRefGoogle Scholar
  76. 76.
    Duzel E, Cabeza R, Picton T W, et al. Task-related and item-related brain processes of memory retrieval. Proc Natl Acad Sci USA, 1999, 96: 1794–1799PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Maguire E A, Frith C D, Rudge P, et al. The effect of adult-acquired hippocampal damage on memory retrieval: an fMRI study. Neuroimage, 2005, 27: 146–152PubMedCrossRefGoogle Scholar
  78. 78.
    McIntosh A M, Harrison L K, Forrester K, et al. Neuropsychological impairments in people with schizophrenia or bipolar disorder and their unaffected relatives. Br J Psychiatry, 2005, 186: 378–385PubMedCrossRefGoogle Scholar
  79. 79.
    Burianova H, Grady C L. Common and unique neural activations in autobiographical, episodic, and semantic retrieval. J Cogn Neurosci, 2007, 19: 1520–1534PubMedCrossRefGoogle Scholar
  80. 80.
    Ryan L, Cox C, Hayes S M, et al. Hippocampal activation during episodic and semantic memory retrieval: comparing category production and category cued recall. Neuropsychologia, 2008, 46: 2109–2121PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Wang D V, Tsien J Z. Convergent processing of both positive and negative motivational signals by the VTA dopamine neuronal populations. PLoS ONE, 2011, 6: e17047PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Frey U, Morris R G. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci, 1998, 21: 181–188PubMedCrossRefGoogle Scholar
  83. 83.
    Frey S, Frey J U. ‘Synaptic tagging’ and’ cross-tagging’ and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Prog Brain Res, 2008, 169: 117–143PubMedCrossRefGoogle Scholar
  84. 84.
    Frey S, Bergado-Rosado J, Seidenbecher T, et al. Reinforcement of early long-term potentiation (early-LTP) in dentate gyrus by stimulation of the basolateral amygdala: heterosynaptic induction mechanisms of late-LTP. J Neurosci, 2001, 21: 3697–3703PubMedGoogle Scholar
  85. 85.
    Lin L, Chen G, Kuang H, et al. Neural encoding of the concept of nest in the mouse brain. Proc Natl Acad Sci USA, 2007, 104: 6066–6071PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Hampson R E, Pons T P, Stanford T R, et al. Categorization in the monkey hippocampus: a possible mechanism for encoding information into memory. Proc Natl Acad Sci USA, 2004, 101: 3184–3189PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Osan R, Chen G, Feng R, et al. Differential consolidation and pattern reverberations within episodic cell assemblies in the mouse hippocampus. PLoS ONE, 2011, 6: e16507PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Warrington E K, Shallice T. Category specific semantic impairments. Brain, 1984, 107(Pt 3): 829–854PubMedCrossRefGoogle Scholar
  89. 89.
    Tranel D, Damasio H, Damasio A R. A neural basis for the retrieval of conceptual knowledge. Neuropsychologia, 1997, 35: 1319–1327PubMedCrossRefGoogle Scholar
  90. 90.
    Hodges J R, Graham K S. Episodic memory: insights from semantic dementia. Philos Trans R Soc Lond B Biol Sci, 2001, 356: 1423–1434PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Messas C S, Mansur L L, Castro L H. Semantic memory impairment in temporal lobe epilepsy associated with hippocampal sclerosis. Epilepsy Behav, 2008, 12: 311–316PubMedCrossRefGoogle Scholar
  92. 92.
    Quiroga R Q, Reddy L, Kreiman G, et al. Invariant visual representation by single neurons in the human brain. Nature, 2005, 435: 1102–1107PubMedCrossRefGoogle Scholar
  93. 93.
    Quiroga R Q, Kreiman G, Koch C, et al. Sparse but not ‘grandmother-cell’ coding in the medial temporal lobe. Trends Cogn Sci, 2008, 12: 87–91PubMedCrossRefGoogle Scholar
  94. 94.
    Zhu D, Li K, Guo L, et al. Dicccol: dense individualized and common connectivity-based cortical landmarks. Cereb Cortex, 2013, 23: 786–800PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Yuan Y, Jiang X, Zhu D, et al. Meta-analysis of functional roles of dicccols. Neuroinformatics, 2013, 11: 47–63PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Addis D R, Pan L, Vu M A, et al. Constructive episodic simulation of the future and the past: distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia, 2009, 47: 2222–2238PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Joe Z. Tsien
    • 1
  • Meng Li
    • 1
  • Remus Osan
    • 2
  • GuiFen Chen
    • 3
  • LongNian Lin
    • 4
  • Phillip Lei Wang
    • 1
  • Sabine Frey
    • 1
  • Julietta Frey
    • 1
  • DaJiang Zhu
    • 5
  • TianMing Liu
    • 5
  • Fang Zhao
    • 1
    • 6
  • Hui Kuang
    • 1
    • 6
  1. 1.Brain and Behavior Discovery Institute, Medical College of GeorgiaGeorgia Regents UniversityAugustaUSA
  2. 2.Department of Mathematics and Institute of NeuroscienceGeorgia State UniversityAtlantaUSA
  3. 3.Department of Cell and Developmental BiologyUniversity College LondonLondonUK
  4. 4.Shanghai Institute of Brain Functional GenomicsEast China Normal UniversityShanghaiChina
  5. 5.Department of Computer Science & Bioimaging Research CenterThe University of GeorgiaAthensGreece
  6. 6.Brain Decoding Center, Banna Biomedical Research InstituteXi-Shuang-Ban-Na PrefectureYunnanChina

Personalised recommendations