Skip to main content

On brain activity mapping: insights and lessons from Brain Decoding Project to map memory patterns in the hippocampus

Abstract

The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.

References

  1. 1

    Hebb D O. The Organization of Behavior. New York: Wiley, 1949

    Google Scholar 

  2. 2

    Wigstrom H, Gustafsson B. On long-lasting potentiation in the hippocampus: a proposed mechanism for its dependence on coincident pre- and postsynaptic activity. Acta Physiol Scand, 1985, 123: 519–522

    PubMed  CAS  Article  Google Scholar 

  3. 3

    Bliss T V, Collingridge G L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993, 361: 31–39

    PubMed  CAS  Article  Google Scholar 

  4. 4

    Malenka R C, Nicoll R A. Long-term potentiation-a decade of progress? Science, 1999, 285: 1870–1874

    PubMed  CAS  Article  Google Scholar 

  5. 5

    Bi G, Poo M. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci, 2001, 24: 139–166

    PubMed  CAS  Article  Google Scholar 

  6. 6

    Tsien J Z. Building a brainier mouse. Sci Am, 2000, 282: 62–68

    PubMed  CAS  Article  Google Scholar 

  7. 7

    Abbott L F, Sejnowski T J. Neural Codes and Distributed Representations: Foundations of Neural Computation. Cambridge: Mit Press, 1999

    Google Scholar 

  8. 8

    Shamir M, Sompolinsky H. Nonlinear population codes. Neural Comput, 2004, 16: 1105–1136

    PubMed  Article  Google Scholar 

  9. 9

    Sanger T D. Neural population codes. Curr Opin Neurobiol, 2003, 13: 238

    PubMed  CAS  Article  Google Scholar 

  10. 10

    Adrian E D. The impulses produced by sensory nerve endings part i. J Physiol, 1926, 61: 49–72

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  11. 11

    Gross C G, Rocha-Miranda C E, Bender D B. Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol, 1972, 35: 96–111

    PubMed  CAS  Google Scholar 

  12. 12

    Fuster J M. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol, 1973, 36: 61-78

    PubMed  Google Scholar 

  13. 13

    Thompson R F. In search of memory traces. Annu Rev Psychol, 2005, 56: 1–23

    PubMed  Article  Google Scholar 

  14. 14

    Zhou Y D, Fuster J M. Mnemonic neuronal activity in somatosensory cortex. Proc Natl Acad Sci USA, 1996, 93: 10533–10537

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  15. 15

    Bialek W, Rieke F. Reliability and information transmission in spiking neurons. Trends Neurosci, 1992, 15: 428–434

    PubMed  CAS  Article  Google Scholar 

  16. 16

    Lestienne R. Spike timing, synchronization and information processing on the sensory side of the central nervous system. Prog Neurobiol, 2001, 65: 545–591

    PubMed  CAS  Article  Google Scholar 

  17. 17

    Lin L, Osan R, Tsien J Z. Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. Trends Neurosci, 2006, 29: 48–57

    PubMed  CAS  Article  Google Scholar 

  18. 18

    Eskandar E N, Richmond B J, Optican L M. Role of inferior temporal neurons in visual memory. I. Temporal encoding of information about visual images, recalled images, and behavioral context. J Neurophysiol, 1992, 68: 1277–1295

    PubMed  CAS  Google Scholar 

  19. 19

    Miller E K, Li L, Desimone R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J Neurosci, 1993, 13: 1460–1478

    PubMed  CAS  Google Scholar 

  20. 20

    Gochin P M, Colombo M, Dorfman G A, et al. Neural ensemble coding in inferior temporal cortex. J Neurophysiol, 1994, 71: 2325–2337

    PubMed  CAS  Google Scholar 

  21. 21

    Schmidt E M. Electrodes for many single neuron recordings. Methods Neural Ensemble Record, 1999, 1-23

  22. 22

    McNaughton B L, O’Keefe J, Barnes C A. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods, 1983, 8: 391–397

    PubMed  CAS  Article  Google Scholar 

  23. 23

    Buzsaki G. Large-scale recording of neuronal ensembles. Nat Neurosci, 2004, 7: 446–451

    PubMed  CAS  Article  Google Scholar 

  24. 24

    Harris K D, Henze D A, Csicsvari J, et al. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol, 2000, 84: 401–414

    PubMed  CAS  Google Scholar 

  25. 25

    Georgopoulos A P, Schwartz A B, Kettner R E. Neuronal population coding of movement direction. Science, 1986, 233: 1416–1419

    PubMed  CAS  Article  Google Scholar 

  26. 26

    Velliste M, Perel S, Spalding M C, et al. Cortical control of a prosthetic arm for self-feeding. Nature, 2008, 453: 1098–1101

    PubMed  CAS  Article  Google Scholar 

  27. 27

    Musallam S, Corneil B D, Greger B, et al. Cognitive control signals for neural prosthetics. Science, 2004, 305: 258–262

    PubMed  CAS  Article  Google Scholar 

  28. 28

    Nicolelis M A, Ribeiro S. Seeking the neural code. Sci Am, 2006, 295: 70–77

    PubMed  Article  Google Scholar 

  29. 29

    Donoghue J P. Bridging the brain to the world: a perspective on neural interface systems. Neuron, 2008, 60: 511–521

    PubMed  CAS  Article  Google Scholar 

  30. 30

    O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res, 1971, 34: 171–175

    PubMed  Article  Google Scholar 

  31. 31

    O’Keefe J, Nadel L. The Hippocampus as a Cognitive Map. Oxford: Clarendon Press, 1978

    Google Scholar 

  32. 32

    Wilson M A, McNaughton B L. Dynamics of the hippocampal ensemble code for space. Science, 1993, 261: 1055–1058

    PubMed  CAS  Article  Google Scholar 

  33. 33

    Redish A D. The hippocampal debate: are we asking the right questions? Behav Brain Res, 2001, 127: 81–98

    PubMed  CAS  Article  Google Scholar 

  34. 34

    Kentros C. Hippocampal place cells: the “where” of episodic memory? Hippocampus, 2006, 16: 743–754

    PubMed  Article  Google Scholar 

  35. 35

    Mizumori S J. Hippocampal place fields: a neural code for episodic memory? Hippocampus, 2006, 16: 685–690

    PubMed  Article  Google Scholar 

  36. 36

    Smith D M, Mizumori S J. Hippocampal place cells, context, and episodic memory. Hippocampus, 2006, 16: 716–729

    PubMed  Article  Google Scholar 

  37. 37

    Oler J A, Penley S C, Sava S, et al. Does the dorsal hippocampus process navigational routes or behavioral context? A single-unit analysis. Eur J Neurosci, 2008, 28: 802–812

    PubMed  Article  Google Scholar 

  38. 38

    Tsien J Z, Chen D F, Gerber D, et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell, 1996, 87: 1317–1326

    PubMed  CAS  Article  Google Scholar 

  39. 39

    Tsien J Z, Huerta P T, Tonegawa S. The essential role of hippocampal ca1 nmda receptor-dependent synaptic plasticity in spatial memory. Cell, 1996, 87: 1327–1338

    PubMed  CAS  Article  Google Scholar 

  40. 40

    Tang Y P, Shimizu E, Dube G R, et al. Genetic enhancement of learning and memory in mice. Nature, 1999, 401: 63–69

    PubMed  CAS  Article  Google Scholar 

  41. 41

    Shimizu E, Tang Y P, Rampon C, et al. Nmda receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science, 2000, 290: 1170–1174

    PubMed  CAS  Article  Google Scholar 

  42. 42

    Cui Z, Wang H, Tan Y, et al. Inducible and reversible nr1 knockout reveals crucial role of the nmda receptor in preserving remote memories in the brain. Neuron, 2004, 41: 781–793

    PubMed  CAS  Article  Google Scholar 

  43. 43

    Cao X, Wang H, Mei B, et al. Inducible and selective erasure of memories in the mouse brain via chemical-genetic manipulation. Neuron, 2008, 60: 353–366

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  44. 44

    Wang L P, Li F, Wang D, et al. Nmda receptors in dopaminergic neurons are crucial for habit learning. Neuron, 2011, 72: 1055–1066

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  45. 45

    Tsien J Z. The memory code. Sci Am, 2007, 297: 52–59

    PubMed  Article  Google Scholar 

  46. 46

    Alivisatos A P, Chun M, Church G M, et al. The brain activity map project and the challenge of functional connectomics. Neuron, 2012, 74: 970–974

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  47. 47

    Mitra P. What’s wrong with the brain activity map proposal. Sci Am, 2013, http://www.scientificamerican.com/article.cfm?id=whats-wrong-

    Google Scholar 

  48. 48

    with-the-brain-activity-map-proposal

  49. 49

    Somogyi P, Klausberger T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol, 2005, 562: 9–26

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  50. 50

    Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 2008, 321: 53–57

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  51. 51

    Freund T F, Buzsaki G. Interneurons of the hippocampus. Hippocampus, 1996, 6: 347–470

    PubMed  CAS  Article  Google Scholar 

  52. 52

    Kuang H, Lin L, Tsien J Z. Temporal dynamics of distinct ca1 cell populations during unconscious state induced by ketamine. PLoS ONE, 2010, 5: e15209

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Klausberger T, Magill P J, Marton L F, et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 2003, 421: 844–848

    PubMed  CAS  Article  Google Scholar 

  54. 54

    Tukker J J, Fuentealba P, Hartwich K, et al. Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo. J Neurosci, 2007, 27: 8184–8189

    PubMed  CAS  Article  Google Scholar 

  55. 55

    Harvey C D, Coen P, Tank D W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature, 2012, 484: 62–68

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  56. 56

    Ziv Y, Burns L D, Cocker E D, et al. Long-term dynamics of ca1 hippocampal place codes. Nat Neurosci, 2013, 16: 264–266

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  57. 57

    Davis M, Hitchcock J M, Rosen J B. Anxiety and the amygdala: pharmacological and anatomical analysis of the fear-potentiated startle paradigm. Psycho Learn Motivat, 1988, 21: 263–305

    Article  Google Scholar 

  58. 58

    LeDoux J E. Emotion, memory and the brain. Sci Am, 1994, 270: 50–57

    PubMed  CAS  Article  Google Scholar 

  59. 59

    Clark R E, Squire L R. Classical conditioning and brain systems: the role of awareness. Science, 1998, 280: 77–81

    PubMed  CAS  Article  Google Scholar 

  60. 60

    Maren S. Neurobiology of pavlovian fear conditioning. Annu Rev Neurosci, 2001, 24: 897–931

    PubMed  CAS  Article  Google Scholar 

  61. 61

    Kim J J, Jung M W. Neural circuits and mechanisms involved in pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev, 2006, 30: 188–202

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Clark R E, Zola S. Trace eyeblink classical conditioning in the monkey: a nonsurgical method and behavioral analysis. Behav Neurosci, 1998, 112: 1062–1068

    PubMed  CAS  Article  Google Scholar 

  63. 63

    McEchron M D, Bouwmeester H, Tseng W, et al. Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus, 1998, 8: 638–646

    PubMed  CAS  Article  Google Scholar 

  64. 64

    Knight D C, Cheng D T, Smith C N, et al. Neural substrates mediating human delay and trace fear conditioning. J Neurosci, 2004, 24: 218–228

    PubMed  CAS  Article  Google Scholar 

  65. 65

    Matus-Amat P, Higgins E A, Barrientos R M, et al. The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations. J Neurosci, 2004, 24: 2431–2439

    PubMed  CAS  Article  Google Scholar 

  66. 66

    Chowdhury N, Quinn J J, Fanselow M S. Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice. Behav Neurosci, 2005, 119: 1396–1402

    PubMed  Article  Google Scholar 

  67. 67

    Biedenkapp J C, Rudy J W. Context preexposure prevents forgetting of a contextual fear memory: implication for regional changes in brain activation patterns associated with recent and remote memory tests. Learn Mem, 2007, 14: 200–203

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Lin L, Osan R, Shoham S, et al. Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. Proc Natl Acad Sci USA, 2005, 102: 6125–6130

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  69. 69

    Lin L, Chen G, Xie K, et al. Large-scale neural ensemble recording in the brains of freely behaving mice. J Neurosci Methods, 2006, 155: 28–38

    PubMed  Article  Google Scholar 

  70. 70

    Osan R, Zhu L, Shoham S, et al. Subspace projection approaches to classification and visualization of neural network-level encoding patterns. PLoS ONE, 2007, 2: e404

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Chen G, Wang L P, Tsien J Z. Neural population-level memory traces in the mouse hippocampus. PLoS ONE, 2009, 4: e8256

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72

    Tulving E. Episodic and semantic memory. In: Tulving E, Donaldson W, eds. Organization of Memory. New York: Academic Press, 1972. 381–402

    Google Scholar 

  73. 73

    Squire L R, Zola S M. Episodic memory, semantic memory, and amnesia. Hippocampus, 1998, 8: 205–211

    PubMed  CAS  Article  Google Scholar 

  74. 74

    Cohen N J, Eichenbaum H. Memory, Amnesia, and the Hippocampal System. Cambridge: MIT Press, 1993

    Google Scholar 

  75. 75

    Kapur N, Friston K J, Young A, et al. Activation of human hippocampal formation during memory for faces: a pet study. Cortex, 1995, 31: 99–108

    PubMed  CAS  Article  Google Scholar 

  76. 76

    Duzel E, Cabeza R, Picton T W, et al. Task-related and item-related brain processes of memory retrieval. Proc Natl Acad Sci USA, 1999, 96: 1794–1799

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  77. 77

    Maguire E A, Frith C D, Rudge P, et al. The effect of adult-acquired hippocampal damage on memory retrieval: an fMRI study. Neuroimage, 2005, 27: 146–152

    PubMed  Article  Google Scholar 

  78. 78

    McIntosh A M, Harrison L K, Forrester K, et al. Neuropsychological impairments in people with schizophrenia or bipolar disorder and their unaffected relatives. Br J Psychiatry, 2005, 186: 378–385

    PubMed  Article  Google Scholar 

  79. 79

    Burianova H, Grady C L. Common and unique neural activations in autobiographical, episodic, and semantic retrieval. J Cogn Neurosci, 2007, 19: 1520–1534

    PubMed  Article  Google Scholar 

  80. 80

    Ryan L, Cox C, Hayes S M, et al. Hippocampal activation during episodic and semantic memory retrieval: comparing category production and category cued recall. Neuropsychologia, 2008, 46: 2109–2121

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Wang D V, Tsien J Z. Convergent processing of both positive and negative motivational signals by the VTA dopamine neuronal populations. PLoS ONE, 2011, 6: e17047

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  82. 82

    Frey U, Morris R G. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci, 1998, 21: 181–188

    PubMed  CAS  Article  Google Scholar 

  83. 83

    Frey S, Frey J U. ‘Synaptic tagging’ and’ cross-tagging’ and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Prog Brain Res, 2008, 169: 117–143

    PubMed  CAS  Article  Google Scholar 

  84. 84

    Frey S, Bergado-Rosado J, Seidenbecher T, et al. Reinforcement of early long-term potentiation (early-LTP) in dentate gyrus by stimulation of the basolateral amygdala: heterosynaptic induction mechanisms of late-LTP. J Neurosci, 2001, 21: 3697–3703

    PubMed  CAS  Google Scholar 

  85. 85

    Lin L, Chen G, Kuang H, et al. Neural encoding of the concept of nest in the mouse brain. Proc Natl Acad Sci USA, 2007, 104: 6066–6071

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  86. 86

    Hampson R E, Pons T P, Stanford T R, et al. Categorization in the monkey hippocampus: a possible mechanism for encoding information into memory. Proc Natl Acad Sci USA, 2004, 101: 3184–3189

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  87. 87

    Osan R, Chen G, Feng R, et al. Differential consolidation and pattern reverberations within episodic cell assemblies in the mouse hippocampus. PLoS ONE, 2011, 6: e16507

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  88. 88

    Warrington E K, Shallice T. Category specific semantic impairments. Brain, 1984, 107(Pt 3): 829–854

    PubMed  Article  Google Scholar 

  89. 89

    Tranel D, Damasio H, Damasio A R. A neural basis for the retrieval of conceptual knowledge. Neuropsychologia, 1997, 35: 1319–1327

    PubMed  CAS  Article  Google Scholar 

  90. 90

    Hodges J R, Graham K S. Episodic memory: insights from semantic dementia. Philos Trans R Soc Lond B Biol Sci, 2001, 356: 1423–1434

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  91. 91

    Messas C S, Mansur L L, Castro L H. Semantic memory impairment in temporal lobe epilepsy associated with hippocampal sclerosis. Epilepsy Behav, 2008, 12: 311–316

    PubMed  Article  Google Scholar 

  92. 92

    Quiroga R Q, Reddy L, Kreiman G, et al. Invariant visual representation by single neurons in the human brain. Nature, 2005, 435: 1102–1107

    PubMed  CAS  Article  Google Scholar 

  93. 93

    Quiroga R Q, Kreiman G, Koch C, et al. Sparse but not ‘grandmother-cell’ coding in the medial temporal lobe. Trends Cogn Sci, 2008, 12: 87–91

    PubMed  Article  Google Scholar 

  94. 94

    Zhu D, Li K, Guo L, et al. Dicccol: dense individualized and common connectivity-based cortical landmarks. Cereb Cortex, 2013, 23: 786–800

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Yuan Y, Jiang X, Zhu D, et al. Meta-analysis of functional roles of dicccols. Neuroinformatics, 2013, 11: 47–63

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Addis D R, Pan L, Vu M A, et al. Constructive episodic simulation of the future and the past: distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia, 2009, 47: 2222–2238

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Joe Z. Tsien or Hui Kuang.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Tsien, J.Z., Li, M., Osan, R. et al. On brain activity mapping: insights and lessons from Brain Decoding Project to map memory patterns in the hippocampus. Sci. China Life Sci. 56, 767–779 (2013). https://doi.org/10.1007/s11427-013-4521-1

Download citation

Keywords

  • BRAIN project
  • Brain Decoding Project
  • brain activity map
  • learning and memory
  • episodic memory
  • semantic knowledge
  • imagination
  • concepts
  • fear conditioning