Emerging infectious diseases associated with bat viruses

Abstract

Bats play important roles as pollen disseminators and pest predators. However, recent interest has focused on their role as natural reservoirs of pathogens associated with emerging infectious diseases. Prior to the outbreak of severe acute respiratory syndrome (SARS), about 60 bat virus species had been reported. The number of identified bat viruses has dramatically increased since the initial SARS outbreak, and most are putative novel virus species or genotypes. Serious infectious diseases caused by previously identified bat viruses continue to emerge throughout in Asia, Australia, Africa and America. Intriguingly, bats infected by these different viruses seldom display clinical symptoms of illness. The pathogenesis and potential threat of bat-borne viruses to public health remains largely unknown. This review provides a brief overview of bat viruses associated with emerging human infectious diseases.

References

  1. 1

    Woo P C Y, Lau S K P, Lam C S F, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus. J Virol, 2012, 86: 3995–4008

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  2. 2

    de Groot R, Baker S, Baric R, et al. Family Coronaviridae. In: Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego, CA: Academic Press, 2012. 806–828

    Google Scholar 

  3. 3

    Ksiazek T G, Erdman D, Goldsmith C S, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 2003, 348: 1953–1966

    PubMed  CAS  Article  Google Scholar 

  4. 4

    Drosten C, Gunther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 2003, 348: 1967–1976

    PubMed  CAS  Article  Google Scholar 

  5. 5

    Guan Y, Zheng B J, He Y Q, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 2003, 302: 276–278

    PubMed  CAS  Article  Google Scholar 

  6. 6

    Wang M, Yan M, Xu H, et al. SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis, 2005, 11: 1860–1865

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Tu C, Crameri G, Kong X, et al. Antibodies to SARS coronavirus in civets. Emerg Infect Dis, 2004, 10: 2244–2248

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  8. 8

    Kan B, Wang M, Jing H, et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol, 2005, 79: 11892–11900

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  9. 9

    Poon L L M, Chu D K W, Chan K H, et al. Identification of a novel coronavirus in bats. J Virol, 2005, 79: 2001–2009

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  10. 10

    Li W D, Shi Z L, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science, 2005, 310: 676–679

    PubMed  CAS  Article  Google Scholar 

  11. 11

    Lau S K P, Woo P C Y, Li K S M, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA, 2005, 102: 14040–14045

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  12. 12

    Drexler J F, Gloza-Rausch F, Glende J, et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol, 2010, 84: 11336–11349

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  13. 13

    Tong S, Conrardy C, Ruone S, et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg Infect Dis, 2009, 15: 482–485

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Yuan J, Hon C C, Li Y, et al. Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. J Gen Virol, 2010, 91: 1058–1062

    PubMed  CAS  Article  Google Scholar 

  15. 15

    Ren W, Li W D, Yu M, et al. Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis. J Gen Virol, 2006, 87: 3355–3359

    PubMed  CAS  Article  Google Scholar 

  16. 16

    Quan P L, Firth C, Street C, et al. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. MBio, 2010, e00208-10

    Google Scholar 

  17. 17

    Ren W, Qu X X, Li W D, et al. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARSlike coronavirus of bat origin. J Virol, 2008, 82: 1899–1907

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  18. 18

    Hon C C, Lam T Y, Shi Z L, et al. Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. J Virol, 2008, 82: 1819–1826

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  19. 19

    WHO. Coronavirus infections. http://www.who.int/csr/disease/coronavirus_infections/en/

  20. 20

    Zaki A M, van Boheemen S, Bestebroer T M, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 2012, 367: 1814–1820

    PubMed  CAS  Article  Google Scholar 

  21. 21

    Lau S K, Li K S, Tsang A K, et al. Genetic characterization of Betacoronavirus lineage C viruses in bats revealed marked sequence divergence in the spike protein of Pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications on the origin of the novel Middle East Respiratory Syndrome Coronavirus. J Virol, 2013, doi: 10.1128/JVI.01055-13

    Google Scholar 

  22. 22

    van Boheemen S, de Graaf M, Lauber C, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio, 2012, 3: e00473–12

    PubMed  PubMed Central  Google Scholar 

  23. 23

    Raj V S, Mou H, Smits S L, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495: 251–254

    PubMed  CAS  Article  Google Scholar 

  24. 24

    Lu GW, Liu D. SARS-like virus in the middle east: A truly bat-related coronavirus causing human diseases. Protein Cell, 2012, 3: 803–805

    PubMed  Article  Google Scholar 

  25. 25

    van der Hoek L, Pyrc K, Jebbink M F, et al. Identification of a new human coronavirus. Nat Med, 2004, 10: 368–373

    PubMed  Article  Google Scholar 

  26. 26

    Cavallar J J, Monto A S. Community-wide outbreak of infection with a 229E-like coronavirus in Tecumseh, Michigan. J Infect Dis, 1970, 122: 272–279

    Article  Google Scholar 

  27. 27

    Pfefferle S, Oppong S, Drexler J F, et al. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg Infect Dis, 2009, 15: 1377–1384

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Huynh J, Li S, Yount B, et al. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J Virol, 2012, 86: 12816–12825

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  29. 29

    Johnson N, Vos A, Freuling C, et al. Human rabies due to lyssavirus infection of bat origin. Vet Microbiol, 2010, 142: 151–159

    PubMed  CAS  Article  Google Scholar 

  30. 30

    Rupprecht C E, Turmelle A, Kuzmin I V. A perspective on lyssavirus emergence and perpetuation. Cur Opin Virol, 2011, 1: 662–670

    Article  Google Scholar 

  31. 31

    Tang X, Luo M, Zhang S, et al. Pivotal role of dogs in rabies transmission, China. Emerg Infect Dis, 2005, 11: 1970–1972

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Murray K, Selleck P, Hooper P, et al. A morbillivirus that caused fatal disease in horses and humans. Science, 1995, 268: 94–97

    PubMed  CAS  Article  Google Scholar 

  33. 33

    Field H, Crameri G, Kung N Y, et al. Ecological aspects of Hendra virus. Cur Top Microbiol Immunol, 2012, 359: 11–23

    CAS  Google Scholar 

  34. 34

    Chua K B, Bellini W J, Rota P A, et al. Nipah virus: a recently emergent deadly paramyxovirus. Science, 2000, 288: 1432–1435

    PubMed  CAS  Article  Google Scholar 

  35. 35

    Lo M K, Rota P A. The emergence of Nipah virus, a highly pathogenic paramyxovirus. J Clin Virol, 2008, 43: 396–400

    PubMed  CAS  Article  Google Scholar 

  36. 36

    Luby P S, Hossain M J, Gurley E S, et al. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg Infect Dis, 2009, 15: 1229–1233

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Tan C T, Goh K J, Wong K T, et al. Relapsed and late-onset Nipah encephalitis. Ann Neurol, 2002, 51: 703–708

    PubMed  Article  Google Scholar 

  38. 38

    Wang L F, Yu M, Hansson E, et al. The exceptionally large genome of Hendra virus: support for creation of a new genus within the family Paramyxoviridae. J Virol, 2000, 74: 9972–9979

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  39. 39

    Reynes J M, Counor D, Ong S, et al. Nipah virus in lyle’s flying foxes, Cambodia. Emerg Infect Dis, 2005, 11: 1042–1047

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Wacharapluesadee S, Lumlertdacha B, Boongird K, et al. Bat Nipah virus, Thailand. Emerg Infect Dis, 2005, 11: 1949–1951

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Drexler J F, Corman V M, Muller M A, et al. Bats host major mammalian paramyxoviruses. Nat Commun, 2012, 3: 796

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Shi Z. Bat and virus. Protein Cell, 2010, 1: 109–114

    PubMed  Article  Google Scholar 

  43. 43

    Calisher C H, Childs J E, Field H E, et al. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev, 2006, 19: 531–545

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Wong S, Lau S, Woo P, et al. Bats as a continuing source of emerging infections in humans. Rev Med Virol, 2007, 17: 67–91

    PubMed  Article  Google Scholar 

  45. 45

    Barrette R W, Xu L, Rowland J M, et al. Current perspectives on the phylogeny of Filoviridae. Infect Genet Evol, 2011, 11: 1514–1519

    PubMed  Article  Google Scholar 

  46. 46

    Slenczka W, Klenk H D. Forty years of Marburg virus. J Infect Dis, 2007, 196(Suppl 2): S131–S135

    PubMed  Article  Google Scholar 

  47. 47

    Towner J S, Amman B R, Sealy T K, et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog, 2009, 5: e1000536

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Leroy E M, Kumulungui B, Pourrut X, et al. Fruit bats as reservoirs of Ebola virus. Nature, 2005, 438: 575–576

    PubMed  CAS  Article  Google Scholar 

  49. 49

    Towner J S, Pourrut X, Albarino C G, et al. Marburg virus infection detected in a common African bat. PLoS ONE, 2007, 2: e764

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Hayman D T, Emmerich P, Yu M, et al. Long-term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses. PLoS ONE, 2010, 5: e11978

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Pourrut X, Souris M, Towner J S, et al. Large serological survey showing cocirculation of ebola and marburg viruses in gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect Dis, 2009, 9: 159

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Biek R, Walsh P D, Leroy E M, et al. Recent common ancestry of Ebola zaire virus found in a bat reservoir. PLoS Pathog, 2006, 2: e90

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Gard G P, Marshall I D. Nelson bay virus. A novel reovirus. Arch Gesamte Virusforsch, 1973, 43: 34–42

    PubMed  CAS  Article  Google Scholar 

  54. 54

    Pritchard L I, Chua K B, Cummins D, et al. Pulau virus: a new member of the Nelson bay orthoreovirus species isolated from fruit bats in Malaysia. Arch Virol, 2006, 151: 229–239

    PubMed  CAS  Article  Google Scholar 

  55. 55

    Du L, Lu Z, Fan Y, et al. Xi river virus, a new bat reovirus isolated in southern China. Arch Virol, 2010, 155: 1295–1299

    PubMed  CAS  Article  Google Scholar 

  56. 56

    Chua K B, Voon K, Crameri G, et al. Identification and characterization of a new orthoreovirus from patients with acute respiratory infections. PLoS ONE, 2008, 3: e3803

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Chua K B, Crameri G, Hyatt A, et al. A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proc Nat Acad Sci USA, 2007, 104: 11424–11429

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  58. 58

    Wong A H, Cheng P K, Lai M Y, et al. Virulence potential of fusogenic orthoreoviruses. Emerg Infect Dis, 2012, 18: 944–948

    PubMed  CAS  PubMed Central  Google Scholar 

  59. 59

    Kohl C, Lesnik R, Brinkmann A, et al. Isolation and characterization of three mammalian orthoreoviruses from European bats. PLoS ONE, 2012, 7: e43106

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  60. 60

    Lelli D, Moreno A, Lavazza A, et al. Identification of mammalian orthoreovirus type 3 in Italian bats. Zoo Pub Health, 2012, 60: 84–92

    Article  Google Scholar 

  61. 61

    Li Y, Ge X, Zhang H, et al. Host range, prevalence, and genetic diversity of adenoviruses in bats. J Virol, 2010, 84: 3889–3897

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  62. 62

    Maeda K, Hondo E, Terakawa J, et al. Isolation of novel adenovirus from fruit bat (Pteropus dasymallus yayeyamae). Emerg Infect Dis, 2008, 14: 347–349

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Xiao J, Li J, Hu G, et al. Isolation and phylogenetic characterization of bat astroviruses in southern China. Arch Virol, 2011, 156: 1415–1423

    PubMed  CAS  Article  Google Scholar 

  64. 64

    Zhu H C, Chu D K, Liu W, et al. Detection of diverse astroviruses from bats in china. J Gen Virol, 2009, 90: 883–887

    PubMed  CAS  Article  Google Scholar 

  65. 65

    Tsuda S, Watanabe S, Masangkay J S, et al. Genomic and serological detection of bat coronavirus from bats in the Philippines. Arch Virol, 2012, 157: 2349–2355

    PubMed  CAS  Article  Google Scholar 

  66. 66

    Lau S K P, Li K S M, Tsang A K L, et al. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from leschenault’s rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J Virol, 2012, 86: 11906–11918

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  67. 67

    August T A, Mathews F, Nunn M A. Alphacoronavirus detected in bats in the United Kingdom. Vector-Borne Zoonot, 2012, 12: 530–533

    Article  Google Scholar 

  68. 68

    Tao Y, Tang K, Shi M, et al. Genomic characterization of seven distinct bat coronaviruses in Kenya. Virus Res, 2012, 167: 67–73

    PubMed  CAS  Article  Google Scholar 

  69. 69

    Lau S K P, Poon R W S, Wong B H L, et al. Coexistence of different genotypes in the same bat and serological characterization of rousettus bat coronavirus HKU9 belonging to a novel betacoronavirus subgroup. J Virol, 2010, 84: 11385–11394

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  70. 70

    Watanabe S, Masangkay J S, Nagata N, et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg Infect Dis, 2010, 16: 1217–1223

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  71. 71

    Donaldson E F, Haskew A N, Gates J E, et al. Metagenomic analysis of the viromes of three north American bat species: viral diversity among different bat species that share a common habitat. J Virol, 2010, 84: 13004–13018

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  72. 72

    Ge X, Li J, Peng C, et al. Genetic diversity of novel circular ssDNA viruses in bats in China. J Gen Virol, 2012, 92: 2646–2653

    Article  Google Scholar 

  73. 73

    Negredo A, Palacios G, Vazquez-Moron S, et al. Discovery of an Ebolavirus-like filovirus in Europe. PLoS Pathog, 2011, 7: e1002304

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  74. 74

    Wu Z, Ren X, Yang L, et al. Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. J Virol, 2012, 86: 10999–11012

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  75. 75

    Quan P L, Firth C, Conte J M, et al. Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proc Natil Acad Sci USA, 2013, 110: 8194–8199

    CAS  Article  Google Scholar 

  76. 76

    He B, Li Z, Yang F, et al. Virome profiling of bats from Myanmar by metagenomic analysis of tissue samples reveals more novel mammalian viruses. PLoS ONE, 2013, 8: e61950

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  77. 77

    Drexler J F, Seelen A, Corman V M, et al. Bats worldwide carry hepatitis E virus-related viruses that form a putative novel genus within the family Hepeviridae. J Virol, 2012, 86: 9134–9147

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  78. 78

    Zhang H, Todd S, Tachedjian M, et al. A novel bat herpesvirus encodes homologues of major histocompatibility complex classes I and II, c-type lectin, and a unique family of immune-related genes. J Virol, 2012, 86: 8014–8030

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  79. 79

    Tong S, Li Y, Rivailler P, et al. A distinct lineage of influenza a virus from bats. Proc Natil Acad Sci USA, 2012, 109: 4269–4274

    CAS  Article  Google Scholar 

  80. 80

    Sun X, Shi Y, Lu X, et al. Bat-derived influenza hemagglutinin H17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. Cell Rep, 2013, 3: 769–778

    PubMed  CAS  Article  Google Scholar 

  81. 81

    Ge X, Li Y, Yang X, et al. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J Virol, 2012, 86: 4620–4630

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  82. 82

    Lau S K, Woo P C, Lai K K, et al. Complete genome analysis of three novel picornaviruses from diverse bat species. J Virol, 2011, 85: 8819–8828

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  83. 83

    McKnight C A, Wise A G, Maes R K, et al. Papillomavirusassociated basosquamous carcinoma in an Egyptian fruit bat (Rousettus aegyptiacus). J Zoo Wildl Med, 2006, 37: 193–196

    PubMed  Article  Google Scholar 

  84. 84

    Li L, Victoria J G, Wang C, et al. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J Virol, 2010, 84: 6955–6965

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  85. 85

    Zhang G, Cowled C, Shi Z, et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science, 2013, 339: 456–460

    PubMed  CAS  Article  Google Scholar 

  86. 86

    Turnell A S, Grand R J. DNA viruses and the cellular DNA-damage response. J Gen Virol, 2012, 93: 2076–2097

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to ZhengLi Shi.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Shi, Z. Emerging infectious diseases associated with bat viruses. Sci. China Life Sci. 56, 678–682 (2013). https://doi.org/10.1007/s11427-013-4517-x

Download citation

Keywords

  • emerging infectious disease
  • bat virus
  • natural reservoirs