Science China Life Sciences

, Volume 56, Issue 8, pp 688–696

New strategy for virus discovery: viruses identified in human feces in the last decade

Open Access
Review Special Topic: Haunted with and Hunting for Viruses


Emerging and re-emerging viruses continue to surface all over the world. Some of these viruses have the potential for rapid and global spread with high morbidity and mortality, such as the SARS coronavirus outbreak. It is extremely urgent and important to identify a novel virus near-instantaneously to develop an active preventive and/or control strategy. As a culture-independent approach, viral metagenomics has been widely used to investigate highly divergent and completely new viruses in humans, animals, and even environmental samples in the past decade. A new model of Koch’s postulates, named the metagenomic Koch’s postulates, has provided guidance for the study of the pathogenicity of novel viruses. This review explains the viral metagenomics strategy for virus discovery and describes viruses discovered in human feces in the past 10 years using this approach. This review also addresses issues related to the metagenomic Koch’s postulates and the challenges for virus discovery in the future.


next-generation sequencing novel viruses metagenomic Koch’s postulates viral metagenomics 


  1. 1.
    Fouchier R A, Kuiken T, Schutten M, et al. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature, 2003, 423: 240PubMedGoogle Scholar
  2. 2.
    Drosten C, Gunther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 2003, 348: 1967–1976PubMedGoogle Scholar
  3. 3.
    Marra M A, Jones S J, Astell C R, et al. The Genome sequence of the SARS-associated coronavirus. Science, 2003, 300: 1399–1404PubMedGoogle Scholar
  4. 4.
    Peiris J S, Guan Y, Yuen K Y. Severe acute respiratory syndrome. Nat Med, 2004, 10: S88–S97PubMedGoogle Scholar
  5. 5.
    Rota P A, Oberste M S, Monroe S S, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003, 300: 1394–1399PubMedGoogle Scholar
  6. 6.
    Reyes G R, Kim J P. Sequence-independent, single-primer amplification (SISPA) of complex DNA populations. Mol Cell Probes, 1991, 5: 473–481PubMedGoogle Scholar
  7. 7.
    Radford A D, Chapman D, Dixon L, et al. Application of next-generation sequencing technologies in virology. J Gen Virol, 2012, 93: 1853–1868PubMedPubMedCentralGoogle Scholar
  8. 8.
    Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437: 376–380PubMedPubMedCentralGoogle Scholar
  9. 9.
    Rosario K, Breitbart M. Exploring the viral world through metagenomics. Curr Opin Virol, 2011, 1: 289–297PubMedGoogle Scholar
  10. 10.
    Mokili J L, Rohwer F, Dutilh B E. Metagenomics and future perspectives in virus discovery. Curr Opin Virol, 2012, 2: 63–77PubMedGoogle Scholar
  11. 11.
    Delwart E L. Viral metagenomics. Rev Med Virol, 2007, 17: 115–131PubMedGoogle Scholar
  12. 12.
    Yu X J, Liang M F, Zhang S Y, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med, 2011, 364: 1523–1532PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wu Y, Gao G F. Severe fever with thrombocytopenia syndrome virus expands its borders. Emerg Microbes Infect, 2013, in pressGoogle Scholar
  14. 14.
    Allander T, Tammi M T, Eriksson M, et al. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA, 2005, 102: 12891–12896PubMedPubMedCentralGoogle Scholar
  15. 15.
    Zaki A M, van Boheemen S, Bestebroer T M, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 2012, 367: 1814–1820PubMedGoogle Scholar
  16. 16.
    van Boheemen S, de Graaf M, Lauber C, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio, 2012, 3: e00473–12PubMedPubMedCentralGoogle Scholar
  17. 17.
    Chan J F, Li K S, To K K, et al. Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? J Infect, 2012, 65: 477–489PubMedGoogle Scholar
  18. 18.
    Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol, 1986, 51(Pt 1): 263–273PubMedGoogle Scholar
  19. 19.
    Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 1977, 74: 5463–5467PubMedPubMedCentralGoogle Scholar
  20. 20.
    Benson D A, Karsch-Mizrachi I, Lipman D J, et al. GenBank. Nucleic Acids Res, 2011, 39: D32–D37PubMedPubMedCentralGoogle Scholar
  21. 21.
    Murray K, Selleck P, Hooper P, et al. A morbillivirus that caused fatal disease in horses and humans. Science, 1995, 268: 94–97PubMedGoogle Scholar
  22. 22.
    Chua K B, Bellini W J, Rota P A, et al. Nipah virus: a recently emergent deadly paramyxovirus. Science, 2000, 288: 1432–1435PubMedGoogle Scholar
  23. 23.
    Philbey A W, Kirkland P D, Ross A D, et al. An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg Infect Dis, 1998, 4: 269–271PubMedPubMedCentralGoogle Scholar
  24. 24.
    Chua K B, Crameri G, Hyatt A, et al. A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proc Natl Acad Sci USA, 2007, 104: 11424–11429PubMedPubMedCentralGoogle Scholar
  25. 25.
    Barrette R W, Metwally S A, Rowland J M, et al. Discovery of swine as a host for the Reston ebolavirus. Science, 2009, 325: 204–206PubMedGoogle Scholar
  26. 26.
    Mokili J L, Rogers M, Carr J K, et al. Identification of a novel clade of human immunodeficiency virus type 1 in Democratic Republic of Congo. AIDS Res Hum Retroviruses, 2002, 18: 817–823PubMedGoogle Scholar
  27. 27.
    Takemura T, Ekwalanga M, Bikandou B, et al. A novel simian immunodeficiency virus from black mangabey (Lophocebus aterrimus) in the Democratic Republic of Congo. J Gen Virol, 2005, 86: 1967–1971PubMedGoogle Scholar
  28. 28.
    Barlow K L, Ajao A O, Clewley J P. Characterization of a novel simian immunodeficiency virus (SIVmonNG1) genome sequence from a mona monkey (Cercopithecus mona). J Virol, 2003, 77: 6879–6888PubMedPubMedCentralGoogle Scholar
  29. 29.
    Clewley J P, Lewis J C, Brown D W, et al. A novel simian immunodeficiency virus (SIVdrl) pol sequence from the drill monkey, Mandrillus leucophaeus. J Virol, 1998, 72: 10305–10309PubMedPubMedCentralGoogle Scholar
  30. 30.
    Reyes G R, Purdy M A, Kim J P, et al. Isolation of a cDNA from the virus responsible for enterically transmitted non-A, non-B hepatitis. Science, 1990, 247: 1335–1339PubMedGoogle Scholar
  31. 31.
    Chou C C, Lee T T, Chen C H, et al. Design of microarray probes for virus identification and detection of emerging viruses at the genus level. BMC Bioinformatics, 2006, 7: 232PubMedPubMedCentralGoogle Scholar
  32. 32.
    Nicholson T L, Kukielka D, Vincent A L, et al. Utility of a panviral microarray for detection of swine respiratory viruses in clinical samples. J Clin Microbiol, 2011, 49: 1542–1548PubMedPubMedCentralGoogle Scholar
  33. 33.
    Yozwiak N L, Skewes-Cox P, Stenglein M D, et al. Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS Negl Trop Dis, 2012, 6: e1485PubMedPubMedCentralGoogle Scholar
  34. 34.
    Bexfield N, Kellam P. Metagenomics and the molecular identification of novel viruses. Vet J, 2011, 190: 191–198PubMedGoogle Scholar
  35. 35.
    Finkbeiner S R, Li Y, Ruone S, et al. Identification of a novel astrovirus (astrovirus VA1) associated with an outbreak of acute gastroenteritis. J Virol, 2009, 83: 10836–10839PubMedPubMedCentralGoogle Scholar
  36. 36.
    Allander T, Emerson S U, Engle R E, et al. A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci USA, 2001, 98: 11609–11614PubMedPubMedCentralGoogle Scholar
  37. 37.
    Handelsman J, Rondon M R, Brady S F, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol, 1998, 5: R245–R249PubMedGoogle Scholar
  38. 38.
    Riesenfeld C S, Schloss P D, Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet, 2004, 38: 525–552PubMedGoogle Scholar
  39. 39.
    Schloss P D, Handelsman J. Biotechnological prospects from metagenomics. Curr Opin Biotechnol, 2003, 14: 303–310PubMedGoogle Scholar
  40. 40.
    Breitbart M, Salamon P, Andresen B, et al. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA, 2002, 99: 14250–14255PubMedPubMedCentralGoogle Scholar
  41. 41.
    Thurber R V, Haynes M, Breitbart M, et al. Laboratory procedures to generate viral metagenomes. Nat Protoc, 2009, 4: 470–483PubMedGoogle Scholar
  42. 42.
    Edwards R A, Rodriguez-Brito B, Wegley L, et al. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics, 2006, 7: 57PubMedPubMedCentralGoogle Scholar
  43. 43.
    Breitbart M, Rohwer F. Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing. Biotechniques, 2005, 39: 729–736PubMedGoogle Scholar
  44. 44.
    Willner D, Furlan M, Schmieder R, et al. Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity. Proc Natl Acad Sci USA, 2011, 108(Suppl 1): 4547–4553PubMedPubMedCentralGoogle Scholar
  45. 45.
    Endoh D, Mizutani T, Kirisawa R, et al. Species-independent detection of RNA virus by representational difference analysis using non-ribosomal hexanucleotides for reverse transcription. Nucleic Acids Res, 2005, 33: e65PubMedPubMedCentralGoogle Scholar
  46. 46.
    Armour C D, Castle J C, Chen R, et al. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat Methods, 2009, 6: 647–649PubMedGoogle Scholar
  47. 47.
    He S, Wurtzel O, Singh K, et al. Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat Methods, 2010, 7: 807–812PubMedGoogle Scholar
  48. 48.
    Stewart F J, Ottesen E A, DeLong E F. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J, 2010, 4: 896–907PubMedGoogle Scholar
  49. 49.
    Chen Z, Duan X. Ribosomal RNA depletion for massively parallel bacterial RNA-sequencing applications. Methods Mol Biol, 2011, 733: 93–103PubMedGoogle Scholar
  50. 50.
    Blomstrom A L. Viral metagenomics as an emerging and powerful tool in veterinary medicine. Vet Q, 2011, 31: 107–114PubMedGoogle Scholar
  51. 51.
    Gilles A, Meglecz E, Pech N, et al. Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics, 2011, 12: 245PubMedPubMedCentralGoogle Scholar
  52. 52.
    Loman N J, Misra R V, Dallman T J, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol, 2012, 30: 434–439PubMedGoogle Scholar
  53. 53.
    Quail M A, Smith M, Coupland P, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 2012, 13: 341PubMedPubMedCentralGoogle Scholar
  54. 54.
    Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol, 2012, 2012: 251364PubMedPubMedCentralGoogle Scholar
  55. 55.
    Zerbino D R, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res, 2008, 18: 821–829PubMedPubMedCentralGoogle Scholar
  56. 56.
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754–1760PubMedPubMedCentralGoogle Scholar
  57. 57.
    Berlin L E, Rorabaugh M L, Heldrich F, et al. Aseptic meningitis in infants <2 years of age: diagnosis and etiology. J Infect Dis, 1993, 168: 888–892PubMedGoogle Scholar
  58. 58.
    Victoria J G, Kapoor A, Li L, et al. Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis. J Virol, 2009, 83: 4642–4651PubMedPubMedCentralGoogle Scholar
  59. 59.
    Kapoor A, Victoria J, Simmonds P, et al. A highly prevalent and genetically diversified Picornaviridae genus in South Asian children. Proc Natl Acad Sci USA, 2008, 105: 20482–20487PubMedPubMedCentralGoogle Scholar
  60. 60.
    Holtz L R, Finkbeiner S R, Kirkwood C D, et al. Identification of a novel picornavirus related to cosaviruses in a child with acute diarrhea. Virol J, 2008, 5: 159PubMedPubMedCentralGoogle Scholar
  61. 61.
    Dai X Q, Hua X G, Shan T L, et al. Human cosavirus infections in children in China. J Clin Virol, 2010, 48: 228–229PubMedGoogle Scholar
  62. 62.
    Khamrin P, Chaimongkol N, Malasao R, et al. Detection and molecular characterization of cosavirus in adults with diarrhea, Thailand. Virus Genes, 2012, 44: 244–246PubMedGoogle Scholar
  63. 63.
    Kapusinszky B, Phan T G, Kapoor A, et al. Genetic diversity of the genus Cosavirus in the family Picornaviridae: a new species, recombination, and 26 new genotypes. PLoS ONE, 2012, 7: e36685PubMedPubMedCentralGoogle Scholar
  64. 64.
    Stocker A, Souza B F, Ribeiro T C, et al. Cosavirus infection in persons with and without gastroenteritis, Brazil. Emerg Infect Dis, 2012, 18: 656–659PubMedPubMedCentralGoogle Scholar
  65. 65.
    Greninger A L, Runckel C, Chiu C Y, et al. The complete genome of klassevirus—a novel picornavirus in pediatric stool. Virol J, 2009, 6: 82PubMedPubMedCentralGoogle Scholar
  66. 66.
    Li L, Victoria J, Kapoor A, et al. A novel picornavirus associated with gastroenteritis. J Virol, 2009, 83: 12002–12006PubMedPubMedCentralGoogle Scholar
  67. 67.
    Arthur J L, Higgins G D, Davidson G P, et al. A novel bocavirus associated with acute gastroenteritis in Australian children. PLoS Pathog, 2009, 5: e1000391PubMedPubMedCentralGoogle Scholar
  68. 68.
    Kapoor A, Slikas E, Simmonds P, et al. A newly identified bocavirus species in human stool. J Infect Dis, 2009, 199: 196–200PubMedPubMedCentralGoogle Scholar
  69. 69.
    Kapoor A, Simmonds P, Slikas E, et al. Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. J Infect Dis, 2010, 201: 1633–1643PubMedPubMedCentralGoogle Scholar
  70. 70.
    Chieochansin T, Kapoor A, Delwart E, et al. Absence of detectable replication of human bocavirus species 2 in respiratory tract. Emerg Infect Dis, 2009, 15: 1503–1505PubMedPubMedCentralGoogle Scholar
  71. 71.
    Chow B D, Ou Z, Esper F P. Newly recognized bocaviruses (HBoV, HBoV2) in children and adults with gastrointestinal illness in the United States. J Clin Virol, 2010, 47: 143–147PubMedGoogle Scholar
  72. 72.
    Jartti T, Hedman K, Jartti L, et al. Human bocavirus—the first 5 years. Rev Med Virol, 2012, 22: 46–64PubMedGoogle Scholar
  73. 73.
    Jones M S, Kapoor A, Lukashov V V, et al. New DNA viruses identified in patients with acute viral infection syndrome. J Virol, 2005, 79: 8230–8236PubMedPubMedCentralGoogle Scholar
  74. 74.
    Lau S K, Woo P C, Tse H, et al. Identification of novel porcine and bovine parvoviruses closely related to human parvovirus 4. J Gen Virol, 2008, 89: 1840–1848PubMedGoogle Scholar
  75. 75.
    Phan T G, Vo N P, Bonkoungou I J, et al. Acute diarrhea in West African children: diverse enteric viruses and a novel parvovirus genus. J Virol, 2012, 86: 11024–11030PubMedPubMedCentralGoogle Scholar
  76. 76.
    Finkbeiner S R, Allred A F, Tarr P I, et al. Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathog, 2008, 4: e1000011PubMedPubMedCentralGoogle Scholar
  77. 77.
    Finkbeiner S R, Kirkwood C D, Wang D. Complete genome sequence of a highly divergent astrovirus isolated from a child with acute diarrhea. Virol J, 2008, 5: 117PubMedPubMedCentralGoogle Scholar
  78. 78.
    Finkbeiner S R, Le B M, Holtz L R, et al. Detection of newly described astrovirus MLB1 in stool samples from children. Emerg Infect Dis, 2009, 15: 441–444PubMedPubMedCentralGoogle Scholar
  79. 79.
    Finkbeiner S R, Li Y, Ruone S, et al. Identification of a novel astrovirus (astrovirus VA1) associated with an outbreak of acute gastroenteritis. J Virol, 2009, 83: 10836–10839PubMedPubMedCentralGoogle Scholar
  80. 80.
    Finkbeiner S R, Holtz L R, Jiang Y, et al. Human stool contains a previously unrecognized diversity of novel astroviruses. Virol J, 2009, 6: 161PubMedPubMedCentralGoogle Scholar
  81. 81.
    Kapoor A, Li L, Victoria J, et al. Multiple novel astrovirus species in human stool. J Gen Virol, 2009, 90: 2965–2972PubMedPubMedCentralGoogle Scholar
  82. 82.
    Allander T, Andreasson K, Gupta S, et al. Identification of a third human polyomavirus. J Virol, 2007, 81: 4130–4136PubMedPubMedCentralGoogle Scholar
  83. 83.
    Gaynor A M, Nissen M D, Whiley D M, et al. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog, 2007, 3: e64PubMedPubMedCentralGoogle Scholar
  84. 84.
    Feng H, Shuda M, Chang Y, et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science, 2008, 319: 1096–1100PubMedPubMedCentralGoogle Scholar
  85. 85.
    Schowalter R M, Pastrana D V, Pumphrey K A, et al. Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe, 2010, 7: 509–515PubMedPubMedCentralGoogle Scholar
  86. 86.
    Scuda N, Hofmann J, Calvignac-Spencer S, et al. A novel human polyomavirus closely related to the african green monkey-derived lymphotropic polyomavirus. J Virol, 2011, 85: 4586–4590PubMedPubMedCentralGoogle Scholar
  87. 87.
    van der Meijden E, Janssens R W, Lauber C, et al. Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLoS Pathog, 2010, 6: e1001024PubMedPubMedCentralGoogle Scholar
  88. 88.
    Siebrasse E A, Reyes A, Lim E S, et al. Identification of MW polyomavirus, a novel polyomavirus in human stool. J Virol, 2012, 86: 10321–10326PubMedPubMedCentralGoogle Scholar
  89. 89.
    Yu G, Greninger A L, Isa P, et al. Discovery of a novel polyomavirus in acute diarrheal samples from children. PLoS ONE, 2012, 7: e49449PubMedPubMedCentralGoogle Scholar
  90. 90.
    Fringuelli E, Scott A N, Beckett A, et al. Diagnosis of duck circovirus infections by conventional and real-time polymerase chain reaction tests. Avian Pathol, 2005, 34: 495–500PubMedGoogle Scholar
  91. 91.
    Blinkova O, Victoria J, Li Y, et al. Novel circular DNA viruses in stool samples of wild-living chimpanzees. J Gen Virol, 2010, 91: 74–86PubMedPubMedCentralGoogle Scholar
  92. 92.
    Li L, Kapoor A, Slikas B, et al. Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol, 2010, 84: 1674–1682PubMedPubMedCentralGoogle Scholar
  93. 93.
    Rijsewijk F A, Dos S H, Teixeira T F, et al. Discovery of a genome of a distant relative of chicken anemia virus reveals a new member of the genus Gyrovirus. Arch Virol, 2011, 156: 1097–1100PubMedGoogle Scholar
  94. 94.
    Sauvage V, Cheval J, Foulongne V, et al. Identification of the first human gyrovirus, a virus related to chicken anemia virus. J Virol, 2011, 85: 7948–7950PubMedPubMedCentralGoogle Scholar
  95. 95.
    Phan T G, Li L, O’Ryan M G, et al. A third gyrovirus species in human faeces. J Gen Virol, 2012, 93: 1356–1361PubMedPubMedCentralGoogle Scholar
  96. 96.
    Chu D K, Poon L L, Chiu S S, et al. Characterization of a novel gyrovirus in human stool and chicken meat. J Clin Virol, 2012, 55: 209–213PubMedPubMedCentralGoogle Scholar
  97. 97.
    Zhang X, Xie Q, Ji J, et al. Complete genome sequence analysis of a recent chicken anemia virus isolate and comparison with a chicken anemia virus isolate from human fecal samples in China. J Virol, 2012, 86: 10896–10897PubMedPubMedCentralGoogle Scholar
  98. 98.
    Sikorski A, Arguello-Astorga G R, Dayaram A, et al. Discovery of a novel circular single-stranded DNA virus from porcine faeces. Arch Virol, 2013, 158: 283–289PubMedGoogle Scholar
  99. 99.
    Kim H K, Park S J, Nguyen V G, et al. Identification of a novel single-stranded, circular DNA virus from bovine stool. J Gen Virol, 2012, 93: 635–639PubMedGoogle Scholar
  100. 100.
    Kosek M, Bern C, Guerrant R L. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ, 2003, 81: 197–204PubMedPubMedCentralGoogle Scholar
  101. 101.
    O”Ryan M, Prado V, Pickering L K. A millennium update on pediatric diarrheal illness in the developing world. Semin Pediatr Infect Dis, 2005, 16: 125–136Google Scholar
  102. 102.
    Denno D M, Stapp J R, Boster D R, et al. Etiology of diarrhea in pediatric outpatient settings. Pediatr Infect Dis J, 2005, 24: 142–148PubMedGoogle Scholar
  103. 103.
    Fredericks D N, Relman D A. Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin Microbiol Rev, 1996, 9: 18–33PubMedCentralGoogle Scholar
  104. 104.
    Rivers T M. Viruses and Koch’s Postulates. J Bacteriol, 1937, 33: 1–12PubMedPubMedCentralGoogle Scholar
  105. 105.
    Falkow S. Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis, 1988, 10(Suppl 2): S274–S276PubMedGoogle Scholar
  106. 106.
    Delwart E. Animal virus discovery: improving animal health, understanding zoonoses, and opportunities for vaccine development. Curr Opin Virol, 2012, 2: 344–352PubMedPubMedCentralGoogle Scholar
  107. 107.
    Hoffmann B, Scheuch M, Hoper D, et al. Novel orthobunyavirus in Cattle, Europe, 2011. Emerg Infect Dis, 2012, 18: 469–472PubMedPubMedCentralGoogle Scholar
  108. 108.
    Garigliany M M, Bayrou C, Kleijnen D, et al. Schmallenberg virus: a new Shamonda/Sathuperi-like virus on the rise in Europe. Antiviral Res, 2012, 95: 82–87PubMedGoogle Scholar
  109. 109.
    Beer M, Conraths F J, van der Poel W H. ‘Schmallenberg virus’—a novel orthobunyavirus emerging in Europe. Epidemiol Infect, 2013, 141: 1–8PubMedGoogle Scholar
  110. 110.
    Kilpatrick A M, Randolph S E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet, 2012, 380: 1946–1955PubMedPubMedCentralGoogle Scholar
  111. 111.
    Morse S S, Mazet J A, Woolhouse M, et al. Prediction and prevention of the next pandemic zoonosis. Lancet, 2012, 380: 1956–1965PubMedPubMedCentralGoogle Scholar
  112. 112.
    Karesh W B, Dobson A, Lloyd-Smith J O, et al. Ecology of zoonoses: natural and unnatural histories. Lancet, 2012, 380: 1936–1945PubMedGoogle Scholar
  113. 113.
    Pickett B E, Greer D S, Zhang Y, et al. Virus pathogen database and analysis resource (ViPR): a comprehensive bioinformatics database and analysis resource for the coronavirus research community. Viruses, 2012, 4: 3209–3226PubMedPubMedCentralGoogle Scholar
  114. 114.
    Pickett B E, Sadat E L, Zhang Y, et al. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res, 2012, 40: D593–D598PubMedPubMedCentralGoogle Scholar
  115. 115.
    Woolhouse M E, Howey R, Gaunt E, et al. Temporal trends in the discovery of human viruses. Proc Biol Sci, 2008, 275: 2111–2115PubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.National Institute of Viral Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina

Personalised recommendations