Advertisement

Science China Life Sciences

, Volume 56, Issue 8, pp 701–710 | Cite as

Duck egg drop syndrome virus: an emerging Tembusu-related flavivirus in China

  • PeiPei Liu
  • Hao Lu
  • Shuang Li
  • Ying Wu
  • George Fu Gao
  • JingLiang Su
Open Access
Review Special Topic: Haunted with and Hunting for Viruses / Progress of Projects Supported by NSFC

Abstract

Duck egg drop syndrome virus (DEDSV) is a newly emerging pathogenic flavivirus isolated from ducks in China. DEDSV infection mainly results in severe egg drop syndrome in domestic poultry, which leads to huge economic losses. Thus, the discovery of ways and means to combat DEDSV is urgent. Since 2010, a remarkable amount of progress concerning DEDSV research has been achieved. Here, we review current knowledge on the epidemiology, symptomatology, and pathology of DEDSV. A detailed dissection of the viral genome and polyprotein sequences, comparative analysis of viral antigenicity and the corresponding potential immunity against the virus are also summarized. Current findings indicate that DEDSV should be a distinct species from Tembusu virus. Moreover, the adaption of DEDSV in wildlife and its high homology to pathogenic flaviviruses (e.g., West Nile virus, Japanese encephalitis virus, and dengue virus), illustrate its reemergence and potential to become a zoonotic pathogen that should not be overlooked. Detailed insight into the antigenicity and corresponding immunity against the virus is of clear significance for the development of vaccines and antiviral drugs specific for DEDSV.

Keywords

DEDSV BYDV pathology genome phylogeny antigenicity vaccine 

References

  1. 1.
    Porterfield J S. Antigenic characteristics and classification of togaviridae. In: Schlesinger R W, ed. The Togaviruses. New York: Academic Press, 1980. 13–46CrossRefGoogle Scholar
  2. 2.
    Swayne D E, Beck J R, Smith C S, et al. Fatal encephalitis and myocarditis in young domestic geese (Anser anser domesticus) caused by West Nile virus. Emerg Infect Dis, 2001, 7: 751–753PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Austin R J, Whiting T L, Anderson R A, et al. An outbreak of West Nile virus-associated disease in domestic geese (anser anser domesticus) upon initial introduction to a geographic region, with evidence of bird to bird transmission. Can Vet J, 2004, 45: 117–123PubMedPubMedCentralGoogle Scholar
  4. 4.
    Barnard B J, Buys S B, Du Preez J H, et al. Turkey meningo-encephalitis in South Africa. Onderstepoort J Vet Res, 1980, 47: 89–94PubMedGoogle Scholar
  5. 5.
    Gould E A, Solomon T. Pathogenic flaviviruses. Lancet, 2008, 371: 500–509PubMedCrossRefGoogle Scholar
  6. 6.
    Kuno G, Chang G J. Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev, 2005, 18: 608–637PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Weaver S C, Barrett A D. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol, 2004, 2: 789–801PubMedCrossRefGoogle Scholar
  8. 8.
    Weissenbock H, Hubalek Z, Bakonyi T, et al. Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet Microbiol, 2010, 140: 271–280PubMedCrossRefGoogle Scholar
  9. 9.
    Komar N. West Nile virus: epidemiology and ecology in North America. Adv Virus Res, 2003, 61: 185–234PubMedCrossRefGoogle Scholar
  10. 10.
    Guy J S, Malkinson M. Diseases of poultry. In: Saif I M, ed. Arbovirus Infections. Ames: Blackwell Publishing, 2008. 414–425Google Scholar
  11. 11.
    Aguero M, Fernandez-Pinero J, Buitrago D, et al. Bagaza virus in partridges and pheasants, Spain, 2010. Emerg Infect Dis, 2011, 17: 1498–1501PubMedPubMedCentralGoogle Scholar
  12. 12.
    Su J, Li S, Hu X, et al. Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus. PLoS ONE, 2011, 6: e18106PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Yan P, Zhao Y, Zhang X, et al. An infectious disease of ducks caused by a newly emerged Tembusu virus strain in mainland China. Virology, 2011, 417: 1–8PubMedCrossRefGoogle Scholar
  14. 14.
    Cao Z, Zhang C, Liu Y, et al. Tembusu virus in ducks, China. Emerg Infect Dis, 2011, 17: 1873–1875PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Liu P, Lu H, Li S, et al. Genomic and antigenic characterization of the newly emerging Chinese duck egg-drop syndrome flavivirus: genomic comparison with Tembusu and Sitiawan viruses. J Gen Virol, 2012, 93: 2158–2170PubMedCrossRefGoogle Scholar
  16. 16.
    Zhu W, Chen J, Wei C, et al. Complete genome sequence of duck Tembusu virus, isolated from Muscovy ducks in southern China. J Virol, 2012, 86: 13119PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Yun T, Zhang D, Ma X, et al. Complete genome sequence of a novel flavivirus, duck Tembusu virus, isolated from ducks and geese in China. J Virol, 2012, 86: 3406–3407PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wan C, Huang Y, Fu G, et al. Complete genome sequence of avian Tembusu-related virus strain WR isolated from White Kaiya ducks in Fujian, China. J Virol, 2012, 86: 10912PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tang Y, Diao Y, Gao X, et al. Analysis of the complete genome of Tembusu virus, a flavivirus isolated from ducks in China. Transbound Emerg Dis, 2012, 59: 336–343PubMedCrossRefGoogle Scholar
  20. 20.
    Tang Y, Diao Y, Yu C, et al. Characterization of a Tembusu virus isolated from naturally infected house sparrows (Passer domesticus) in Northern China. Transbound Emerg Dis, 2013, 60: 152–158PubMedCrossRefGoogle Scholar
  21. 21.
    Liu M, Chen S, Chen Y, et al. Adapted Tembusu-like virus in chickens and geese in China. J Clin Microbiol, 2012, 50: 2807–2809PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Li S, Zhang L, Wang Y, et al. An infectious full-length CDNA clone of duck Tembusu virus, a newly emerging flavivirus causing duck egg drop syndrome in China. Virus Res, 2013, 171: 238–241PubMedCrossRefGoogle Scholar
  23. 23.
    Li L L, An H J, Sun M H, et al. Identification and genomic analysis of two duck-origin Tembusu virus strains in southern China. Virus Genes, 2012, 45: 105–112PubMedCrossRefGoogle Scholar
  24. 24.
    Vaidya N K, Wang F B, Zou X, et al. Transmission dynamics of the recently-identified BYD virus causing duck egg-drop syndrome. PLoS ONE, 2012, 7: e35161PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Yun T, Ye W, Ni Z, et al. Identification and molecular characterization of a novel flavivirus isolated from Pekin ducklings in China. Vet Microbiol, 2012, 157: 311–319PubMedCrossRefGoogle Scholar
  26. 26.
    Luo L, Wen G, Yang J, et al. Histopathological observation of ducks infected naturally with duck flavivirus. Prog Vet Med, 2012, 33: 4Google Scholar
  27. 27.
    Huang X, Han K, Zhao D, et al. Identification and molecular characterization of a novel flavivirus isolated from geese in China. Res Vet Sci, 2013, 94: 774–780PubMedCrossRefGoogle Scholar
  28. 28.
    Yan L, Yan P, Zhou J, et al. Establishing a taqman-based real-time PCR assay for the rapid detection and quantification of the newly emerged duck Tembusu virus. Virol J, 2011, 8: 464PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Peleg J. Behaviour of infectious RNA from four different viruses in continuously subcultured Aedes aegypti mosquito embryo cells. Nature, 1969, 221: 193–194PubMedCrossRefGoogle Scholar
  30. 30.
    Liu M, Liu C, Li G, et al. Complete genomic sequence of duck flavivirus from China. J Virol, 2012, 86: 3398–3399PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Pletnev A, Gould E A, Heinz F X, et al. Flaviviridae. In: Andrew M Q K, Michael J A, Eric B C, et al., eds. Virus Toxonomy. Oxford: Elsevier, 2011. 1003–1020Google Scholar
  32. 32.
    Institute for Medical Research FoM. Annual report. 1957, 100–103Google Scholar
  33. 33.
    Wolfe N D, Kilbourn A M, Karesh W B, et al. Sylvatic transmission of arboviruses among Bornean orangutans. Amer J Trop Med Hyg, 2001, 64: 310–316Google Scholar
  34. 34.
    Mackenzie J S, Williams D T. The zoonotic flaviviruses of southern, south-eastern and eastern Asia, and Australasia: the potential for emergent viruses. Zoonoses Public HLTH, 2009, 56: 338–356CrossRefGoogle Scholar
  35. 35.
    Gould E A, de Lamballerie X, Zanotto P M A, et al. Origins, evolution, and vector/host coadaptations within the Genus Flavivirus. 2003, 59: 277–314Google Scholar
  36. 36.
    Gaunt M W, Sall A A, Lamballerie X, et al. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol, 2001, 82: 1867–1876PubMedCrossRefGoogle Scholar
  37. 37.
    Thurner C, Witwer C, Hofacker I L, et al. Conserved RNA secondary structures in Flaviviridae genomes. J Gen Virol, 2004, 85: 1113–1124PubMedCrossRefGoogle Scholar
  38. 38.
    Gritsun T S, Gould E A. Origin and evolution of flavivirus 5′UTRs and panhandles: trans-terminal duplications? Virology, 2007, 366: 8–15PubMedCrossRefGoogle Scholar
  39. 39.
    Gritsun T S, Gould E A. Direct repeats in the flavivirus 3′ untranslated region; a strategy for survival in the environment? Virology, 2007, 358: 258–265PubMedCrossRefGoogle Scholar
  40. 40.
    Gritsun T S, Gould E A. Origin and evolution of 3′UTR of flaviviruses: long direct repeats as a basis for the formation of secondary structures and their significance for virus transmission. Adv Virus Res, 2006, 69: 203–248CrossRefGoogle Scholar
  41. 41.
    Villordo S M, Gamarnik A V. Genome cyclization as strategy for flavivirus RNA replication. Virus Res, 2009, 139: 230–239PubMedCrossRefGoogle Scholar
  42. 42.
    Yu L, Nomaguchi M, Padmanabhan R, et al. Specific requirements for elements of the 5′ and 3′ terminal regions in flavivirus RNA synthesis and viral replication. Virology, 2008, 374: 170–185PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Alvarez D E, Lodeiro M F, Luduena S J, et al. Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol, 2005, 79: 6631–6643PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Khromykh A A, Meka H, Guyatt K J, et al. Essential role of cyclization sequences in flavivirus RNA replication. J Virol, 2001, 75: 6719–6728PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Filomatori C V, Lodeiro M F, Alvarez D E, et al. A 5’ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev, 2006, 20: 2238–2249PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wei Y, Qin C, Jiang T, et al. Translational regulation by the 3’ untranslated region of the dengue type 2 virus genome. Am J Trop Med Hyg, 2009, 81: 817–824PubMedCrossRefGoogle Scholar
  47. 47.
    Friebe P, Harris E. Interplay of RNA elements in the dengue virus 5’ and 3’ ends required for viral RNA replication. J Virol, 2010, 84: 6103–6118PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Friebe P, Shi P Y, Harris E. The 5’ and 3’ downstream AUG region elements are required for mosquito-borne flavivirus RNA replication. J Virol, 2011, 85: 1900–1905PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lodeiro M F, Filomatori C V, et al. Structural and functional studies of the promoter element for dengue virus RNA replication. J Virol, 2009, 83: 993–1008PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gebhard L G, Filomatori C V, Gamarnik A V. Functional RNA elements in the dengue virus genome. Viruses, 2011, 3: 1739–1756PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Leyssen P, Charlier N, Lemey P, et al. Complete genome sequence, taxonomic assignment, and comparative analysis of the untranslated regions of the Modoc virus, a flavivirus with no known vector. Virology, 2002, 293: 125–140PubMedCrossRefGoogle Scholar
  52. 52.
    Clyde K, Harris E. RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol, 2006, 80: 2170–2182PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 2003, 31: 3406–3415PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Brinton M A, Fernandez A V, Dispoto J H. The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology, 1986, 153: 113–121PubMedCrossRefGoogle Scholar
  55. 55.
    Hahn C S, Hahn Y S, Rice C M, et al. Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol, 1987, 198: 33–41PubMedCrossRefGoogle Scholar
  56. 56.
    Vazquez-Calvo A, Saiz J C, McCullough K C, et al. Acid-dependent viral entry. Virus Res, 2012, 167: 125–137PubMedCrossRefGoogle Scholar
  57. 57.
    Lee E, Stocks C E, Amberg S M, et al. Mutagenesis of the signal sequence of yellow fever virus prm protein: enhancement of signalase cleavage in vitro is lethal for virus production. J Virol, 2000, 74: 24–32PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lindenbach B D, Thiel H J, Rice C M. Flaviviridae: the viruses and their replication. In: David M K, Peter M H, eds. Fields Virology. Philadelphia: Lippincott Williams & Wilkins, 2007. 1102–1153Google Scholar
  59. 59.
    Pastorino B, Nougairede A, Wurtz N, et al. Role of host cell factors in flavivirus infection: implications for pathogenesis and development of antiviral drugs. Antiviral Res, 2010, 87: 281–294PubMedCrossRefGoogle Scholar
  60. 60.
    Gubler D J, Kuno G, Markoff L. Flaviviruses. In: David M K, Peter M H, eds. Fields Virology. Philadelphia: Lippincott Williams & Wilkins, 2007. 1154–1252Google Scholar
  61. 61.
    Luca V C, AbiMansour J, Nelson C A, et al. Crystal structure of the Japanese encephalitis virus envelope protein. J Virol, 2012, 86: 2337–2346PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Nybakken G E, Nelson C A, Chen B R, et al. Crystal structure of the West Nile virus envelope glycoprotein. J Virol, 2006, 80: 11467–11474PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Modis Y, Ogata S, Clements D, et al. A ligand-binding pocket in the Dengue virus envelope glycoprotein. 2003, 100: 6986–6991Google Scholar
  64. 64.
    Rey F A, Heinz F X, Mandl C, et al. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature, 1995, 375: 291–298PubMedCrossRefGoogle Scholar
  65. 65.
    Roehrig J T. Antigenic structure of flavivirus proteins. Adv Virus Res, 2003, 59: 141–175PubMedCrossRefGoogle Scholar
  66. 66.
    King N J, Getts D R, Getts M T, et al. Immunopathology of flavivirus infections. Immunol Cell Biol, 2007, 85: 33–42PubMedCrossRefGoogle Scholar
  67. 67.
    Sips G J, Wilschut J, Smit J M. Neuroinvasive flavivirus infections. Rev Med Virol, 2012, 22: 69–87PubMedCrossRefGoogle Scholar
  68. 68.
    Bondre V P, Sapkal G N, Yergolkar P N, et al. Genetic characteri-zation of Bagaza virus (BAGV) isolated in India and evidence of anti-BAGV antibodies in sera collected from encephalitis patients. J Gen Virol, 2009, 90: 2644–2649PubMedCrossRefGoogle Scholar
  69. 69.
    Jiang T, Liu J, Deng Y Q, et al. Development of RT-LAMP and real-time RT-PCR assays for the rapid detection of the new duck Tembusu-like BYD virus. Arch Virol, 2012, 157: 2273–2280PubMedCrossRefGoogle Scholar
  70. 70.
    Wang Y, Yuan X, Li Y, et al. Rapid detection of newly isolated Tembusu-related flavivirus by reverse-transcription loop-mediated isothermal amplification assay. Virol J, 2011, 8: 553PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Tang Y, Diao Y, Yu C, et al. Rapid detection of Tembusu virus by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP). Transbound Emerg Dis, 2012, 59: 208–213PubMedCrossRefGoogle Scholar
  72. 72.
    Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, 2000, 28: E63PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pulmanausahakul R, Khakpoor A, Smith D R. The development of flavivirus vaccines. Afr J Biotechnol, 2010, 9: 409–415Google Scholar
  74. 74.
    Theiler M, Smith H H. The use of yellow fever virus modified by in vitro cultivation for human immunization. J Exp Med, 1937, 65: 787–800PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Koraka P, Martina B E E, Osterhaus A. Bioinformatics in new generation flavivirus vaccines. J Biomed Biotechnol, 2010, 2010: 864029PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Pugachev K V, Guirakhoo F, Trent D W, et al. Traditional and novel approaches to flavivirus vaccines. Int J Parasitol, 2003, 33: 567–582PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
  3. 3.Bureau of Life Sciences and BiotechnologyChinese Academy of SciencesBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina
  5. 5.National Institute for Viral Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
  6. 6.Research Network of Immunity and Health, Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations