Science China Life Sciences

, Volume 56, Issue 7, pp 619–627 | Cite as

Mining of a streptothricin gene cluster from Streptomyces sp. TP-A0356 genome via heterologous expression

  • JinE Li
  • ZhengYan Guo
  • Wei Huang
  • XiangXi Meng
  • GuoMin Ai
  • GongLi Tang
  • YiHua Chen
Open Access
Research Paper Special Topic: Biosynthesis and Regulation of Secondary Metabolites in Microorganisms


Streptothricins (STs) are used commercially to treat bacterial and fungal diseases in agriculture. Mining of the sequenced microbial genomes uncovered two cryptic ST clusters from Streptomyces sp. C and Streptomyces sp. TP-A0356. The ST cluster from S. sp. TP-A0356 was verified by successful heterologous expression in Streptomyces coelicolor M145. Two new ST analogs were produced together with streptothricin F and streptothricin D in the heterologous host. The ST cluster was further confirmed by inactivation of gene stnO, which was proposed encoding an aminomutase supplying β-lysines for the poly-β-Lys chain formation. A putative biosynthetic pathway for STs is proposed based on bioinformatics analyses of the ST genes and experimental evidence.


genome mining streptothricin Streptomyces heterologous expression biosynthesis 

Supplementary material

11427_2013_4504_MOESM1_ESM.pdf (868 kb)
Supplementary material, approximately 867 KB.


  1. 1.
    Waksman S A. Production and activity of streptothricin. J Bacteriol, 1943, 46: 299–310PubMedPubMedCentralGoogle Scholar
  2. 2.
    Romer W, Hesse G, Miosga N, et al. Chemical determination of the streptothricin antibiotic nourseothricin. Arch Exp Vet Med, 1986, 40: 693–698Google Scholar
  3. 3.
    Ohba K, Nakayama H, Furihata K, et al. Albothricin, a new streptothricin antibiotic. J Antibiot, 1986, 39: 872–875PubMedCrossRefGoogle Scholar
  4. 4.
    Borders D B, Sax K J, Lancaste J E, et al. Structures of LL-AC541 and LL-AB664: new streptothricin-type antibiotics. Tetrahedron, 1970, 26: 3123–3133PubMedCrossRefGoogle Scholar
  5. 5.
    Inamori Y, Amino H, Tsuboi M, et al. Biological-activities of racemomycin-B, ß-lysine rich streptothricin antibiotic, the main component of Streptomyces lavendulae Op-2. Chem Pharm Bull, 1990, 38: 2296–2298PubMedCrossRefGoogle Scholar
  6. 6.
    Witte W. Selective pressure by antibiotic use in livestock. Int J Antimicrob Agents, 2000, 16: S19–S24PubMedCrossRefGoogle Scholar
  7. 7.
    Jelenska J, Tietze E, Tempe J, et al. Streptothricin resistance as a novel selectable marker for transgenic plant cells. Plant Cell Rep, 2000, 19: 298–303CrossRefGoogle Scholar
  8. 8.
    Thiruvengadam T K, Gould S J, Aberhart D J, et al. Biosynthesis of streptothricin-F. 5. Formation of ß-lysine by Streptomyces L-1689-23. J Am Chem Soc, 1983, 105: 5470–5476CrossRefGoogle Scholar
  9. 9.
    Fernández-Moreno M A, Vallin C, Malpartida F. Streptothricin biosynthesis is catalyzed by enzymes related to nonribosomal peptide bond formation. J Bacteriol, 1997, 179: 6929–6936PubMedPubMedCentralGoogle Scholar
  10. 10.
    Grammel N, Pankevych K, Demydchuk J, et al. A ß-lysine adenylating enzyme and a ß-lysine binding protein involved in poly ß-lysine chain assembly in nourseothricin synthesis in Streptomyces noursei. Eur J Biochem, 2002, 269: 347–357PubMedCrossRefGoogle Scholar
  11. 11.
    Maruyama C, Toyoda J, Kato Y, et al. A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis. Nat Chem Biol, 2012, 8: 791–797PubMedCrossRefGoogle Scholar
  12. 12.
    Gould S J, Lee J N, Wityak J. Biosynthesis of streptothricin-F. 7. The fate of the arginine hydrogens. Bioorg Chem, 1991, 19: 333–350CrossRefGoogle Scholar
  13. 13.
    Palaniswamy V A, Gould S J. Biosynthesis of streptothricin-F. 6. Formation and intermediacy of D-glucosamine in Streptomyces L-1689-23. J Chem Soc, Perkin Trans 1, 1988, 8: 2283–2286CrossRefGoogle Scholar
  14. 14.
    Baltz R H. Antimicrobials from actinomycetes: back to the future. Microbe, 2007, 2: 125–131Google Scholar
  15. 15.
    Kieser T, Bibb M J, Buttner M J, et al. Practical Streptomyces Genetics. Norwich: John Innes Foundation, 2000Google Scholar
  16. 16.
    Gust B, Challis G L, Fowler K, et al. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA, 2003, 100: 1541–1546PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sambrook J, Fritsch T, Maniatis E F. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 2001Google Scholar
  18. 18.
    Liu G, Tian Y, Yang H, et al. A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol, 2005, 55: 1855–1866PubMedCrossRefGoogle Scholar
  19. 19.
    Doumith M, Weingarten P, Wehmeier U F, et al. Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Mol Gen Genet, 2000, 264: 477–485PubMedCrossRefGoogle Scholar
  20. 20.
    Pan Y, Liu G, Yang H, et al. The pleiotropic regulator AdpA-L directly controls the pathway-specific activator a of nikkomycin biosynthesis in Streptomyces ansochromogenes. Mol Microbiol, 2009, 72: 710–723PubMedCrossRefGoogle Scholar
  21. 21.
    Li R, Liu G, Xie Z, et al. PolY, a transcriptional regulator with ATPase activity, directly activates transcription of polR in polyoxin biosynthesis in Streptomyces cacaoi. Mol Microbiol, 2010, 75: 349–364PubMedCrossRefGoogle Scholar
  22. 22.
    Xu G, Wang J, Wang L, et al. Pseudo gamma-butyrolactone receptors respond to antibiotic signals to coordinate antibiotics biosynthesis. J Biol Chem, 2010, 285: 27440–27448PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Huang W, Xu H, Li Y, et al. Characterization of yatakemycin gene cluster revealing a radical S-adenosylmethionine dependent methyltransferase and highlighting spirocyclopropane biosynthesis. J Am Chem Soc, 2012, 134: 8831–8840PubMedCrossRefGoogle Scholar
  24. 24.
    Felnagle E A, Rondon M R, Berti A D, et al. Identification of the biosynthetic gene cluster and an additional gene for resistance to the antituberculosis drug capreomycin. Appl Environ Microbiol, 2007, 73: 4162–4170PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Deli A, Koutsioulis D, Fadouloglou V E, et al. LmbE proteins from Bacillus cereus are de-N-acetylases with broad substrate specificity and are highly similar to proteins in Bacillus anthracis. FEBS J, 2010, 277: 2740–2753PubMedCrossRefGoogle Scholar
  26. 26.
    Parthier C, Gorlich S, Jaenecke F, et al. The O-carbamoyltransferase TobZ catalyzes an ancient enzymatic reaction. Angew Chem Int Ed, 2012, 51: 4046–4052CrossRefGoogle Scholar
  27. 27.
    Song J Y, Kim H A, Kim J S, et al. Genome sequence of the plant growth-promoting rhizobacterium Bacillus sp. strain JS. J Bacteriol, 2012, 194: 3760–3761PubMedCrossRefGoogle Scholar
  28. 28.
    Rachid S, Huo L, Herrmann J, et al. Mining the cinnabaramide biosynthetic pathway to generate novel proteasome inhibitors. Chembiochem, 2011, 12: 922–931PubMedCrossRefGoogle Scholar
  29. 29.
    Oliynyk M, Samborskyy M, Lester J B, et al. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL 23338. Nat Biotechnol, 2007, 25: 447–453PubMedCrossRefGoogle Scholar
  30. 30.
    Bresler M M, Rosser S J, Basran A, et al. Gene cloning and nucleotide sequencing and properties of a cocaine esterase from Rhodococcus sp. strain MB1. Appl Environ Microbiol, 2000, 66: 904–908PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Moustafa A, Loram J E, Hackett J D, et al. Origin of saxitoxin biosynthetic genes in cyanobacteria. PLoS ONE, 2009, 4: e5758PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ju J, Ozanick S G, Shen B, et al. Conversion of (2S)-arginine to (2S,3R)-capreomycidine by VioC and VioD from the viomycin biosynthetic pathway of Streptomyces sp. strain ATCC11861. Chembiochem, 2004, 5: 1281–1285PubMedCrossRefGoogle Scholar
  33. 33.
    Alonso-Vega P, Normand P, Bacigalupe R, et al. Genome sequence of Micromonospora lupini Lupac 08, isolated from root nodules of Lupinus angustifolius. J Bacteriol, 2012, 194: 4135PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    van der Voorn L, Ploegh H L. The WD-40 repeat. FEBS Lett, 1992, 307: 131–134PubMedCrossRefGoogle Scholar
  35. 35.
    Winter J M, Behnken S, Hertweck C. Genomics-inspired discovery of natural products. Curr Opin Chem Biol, 2011, 15: 22–31PubMedCrossRefGoogle Scholar
  36. 36.
    Challis G L. Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology, 2008, 154: 1555–1569PubMedCrossRefGoogle Scholar
  37. 37.
    Krugel H, Fiedler G, Haupt I, et al. Analysis of the nourseothricinresistance gene (nat) of Streptomyces noursei. Gene, 1988, 62: 209–217PubMedCrossRefGoogle Scholar
  38. 38.
    Jackson M D, Gould S J, Zabriskie T M. Studies on the formation and incorporation of streptolidine in the biosynthesis of the peptidyl nucleoside antibiotic streptothricin F. J Org Chem, 2002, 67: 2934–2941PubMedCrossRefGoogle Scholar
  39. 39.
    Llewellyn N M, Spencer J B. Biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics. Nat Prod Rep, 2006, 23: 864–874PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Bio-organic and Natural Product Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations