Science China Life Sciences

, Volume 56, Issue 4, pp 293–297 | Cite as

A novel strategy to inhibit the reproduction and translation of hepatitis C virus

  • AiPing Duan
  • LiMin Ning
  • Chao Li
  • YaFei Hou
  • NaNa Yang
  • LiZhou Sun
  • GenXi LiEmail author
Open Access
Cover Article


Hepatitis C virus (HCV), a positive single-stranded RNA virus, is a major cause of liver disease in humans. Herein we report a novel strategy to inhibit the reproduction and translation of HCV using a short RNA, named an Additional RNA, to activate the endonuclease activity of Argonaute 2 (Ago2). In the presence of the Additional RNA, the HCV genome RNA has the requisite 12 nucleotides of base-pairing with microRNA-122. This activates the endonuclease activity of Ago2, resulting in cleavage and release of the HCV genome RNA from Ago2 and microRNA-122. The free HCV genome RNA would be susceptible to intracellular degradation, effectively inhibiting its reproduction and translation. This study presents a new method to inhibit HCV that may hold great potential for HCV treatment in the future.


hepatitis C virus reproduction and translation Argonaute 2 protein electro-analysis biosensor 


  1. 1.
    Khaliq S, Jahan S, Ijaz B, et al. Inhibition of hepatitis C virus genotype 3a by siRNAs targeting envelope genes. Arch Virol, 2011, 156: 433–442PubMedCrossRefGoogle Scholar
  2. 2.
    Chevalier C, Saulnier A, Benureau Y, et al. Inhibition of hepatitis C virus infection in cell culture by small interfering RNAs. Mol Ther, 2007, 15: 1452–1462PubMedCrossRefGoogle Scholar
  3. 3.
    Chang B, Lee C H, Lee J H, et al. Comparative analysis of intracellular inhibition of hepatitis C virus replication by small interfering RNAs. Biotechnol Lett, 2010, 32: 1231–1237PubMedCrossRefGoogle Scholar
  4. 4.
    Clark V C, Peter J A, Nelson D R. New therapeutic strategies in HCV: second-generation protease inhibitors. Liver Int, 2013, 33(Suppl 1): 80–84PubMedCrossRefGoogle Scholar
  5. 5.
    Ariumi Y, Kuroki M, Kushima Y, et al. Hepatitis C virus hijacks P-body and stress granule components around lipid droplets. J Virol, 2011, 85: 6882–6892PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Jopling C L, Schutz S, Sarnow P. Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe, 2008, 4: 77–85PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Berezhna S Y, Supekova L, Sever M J, et al. Dual regulation of hepatitis C viral RNA by cellular RNAi requires partitioning of Ago2 to lipid droplets and P-bodies. RNA, 2011, 17: 1831–1845PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Liu J, Carmell M A, Rivas F V, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science, 2004, 305: 1437–1441PubMedCrossRefGoogle Scholar
  9. 9.
    Tan G S, Garchow B G, Liu X, et al. Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Res, 2009, 37: 7533–7545PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Rand T A, Ginalski K, Grishin N V, et al. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci USA, 2004, 101: 14385–14389PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Liu Y, Tan H, Tian H, et al. Autoantigen La promotes efficient RNAi, antiviral response, and transposon silencing by facilitating multiple-turnover RISC catalysis. Mol Cell, 2011, 44: 502–508PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Schirle N T, MacRae I J. The crystal structure of human Argonaute2. Science, 2012, 336: 1037–1040PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136: 669–687PubMedCrossRefGoogle Scholar
  14. 14.
    Shimakami T, Yamane D, Jangra R K, et al. Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci USA, 2012, 109: 941–946PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Young D D, Connelly C M, Grohmann C, et al. Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc, 2010, 132: 7976–7981PubMedCrossRefGoogle Scholar
  16. 16.
    Henke J I, Goergen D, Zheng J, et al. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J, 2008, 27: 3300–3310PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lanford R E, Hildebrandt-Eriksen E S, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science, 2010, 327: 198–201PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wilson J A, Zhang C, Huys A, et al. Human Ago2 is required for efficient microRNA 122 regulation of hepatitis C virus RNA accumulation and translation. J Virol, 2011, 85: 2342–2350PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Yang N, Cao Y, Han P, et al. Tools for investigation of the RNA endonuclease activity of mammalian Argonaute2 protein. Anal Chem, 2012, 84: 2492–2497PubMedCrossRefGoogle Scholar
  20. 20.
    Roberts A P, Lewis A P, Jopling C L. miR-122 activates hepatitis C virus translation by a specialized mechanism requiring particular RNA components. Nucleic Acids Res, 2011, 39: 7716–7729PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Jopling C L, Yi M, Lancaster A M, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 2005, 309: 1577–1581PubMedCrossRefGoogle Scholar
  22. 22.
    Yin H, Zhou Y, Zhang H, et al. Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosens Bioelectron, 2012, 33: 247–253PubMedCrossRefGoogle Scholar
  23. 23.
    Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet, 2011, 12: 99–110PubMedCrossRefGoogle Scholar
  24. 24.
    Hun X, Wang Z P. L-Argininamide biosensor based on S1 nuclease hydrolysis signal amplification. Microchim Acta, 2012, 176: 209–216CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • AiPing Duan
    • 1
  • LiMin Ning
    • 1
  • Chao Li
    • 1
  • YaFei Hou
    • 2
  • NaNa Yang
    • 3
  • LiZhou Sun
    • 3
  • GenXi Li
    • 1
    • 2
    Email author
  1. 1.Department of Biochemistry and State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
  2. 2.Laboratory of Biosensing Technology, School of Life SciencesShanghai UniversityShanghaiChina
  3. 3.Department of Obstetricsthe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations