Science China Life Sciences

, Volume 56, Issue 3, pp 201–212

Lifeomics leads the age of grand discoveries

Open Access
Review Special Topic: Lifeomics and Translational Medicine


When our knowledge of a field accumulates to a certain level, we are bound to see the rise of one or more great scientists. They will make a series of grand discoveries/breakthroughs and push the discipline into an ‘age of grand discoveries’. Mathematics, geography, physics and chemistry have all experienced their ages of grand discoveries; and in life sciences, the age of grand discoveries has appeared countless times since the 16th century. Thanks to the ever-changing development of molecular biology over the past 50 years, contemporary life science is once again approaching its breaking point and the trigger for this is most likely to be ‘lifeomics’. At the end of the 20th century, genomics wrote out the ‘script of life’; proteomics decoded the script; and RNAomics, glycomics and metabolomics came into bloom. These ‘omics’, with their unique epistemology and methodology, quickly became the thrust of life sciences, pushing the discipline to new high. Lifeomics, which encompasses all omics, has taken shape and is now signalling the dawn of a new era, the age of grand discoveries.


age of grand discoveries lifeomics life sciences 


  1. 1.
    Wu G S. The evolution of science (in Chinese). Changsha: Hunan Science and Technology Press, 1995Google Scholar
  2. 2.
    Gelbart W M. Databases in genomic research. Science, 1998, 282: 659–661PubMedCrossRefGoogle Scholar
  3. 3.
    Watson J D, Crick F H C. Genetical implications of the structure of deoxyribonucleic acid. Nature, 1953, 171: 964–967PubMedCrossRefGoogle Scholar
  4. 4.
    Ryle A P, Sanger F, Smith L F, et al. The disulphide bonds of insulin. Biochem J, 1955, 60: 541–556PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kendrew J C, Bodo G, Dintzis H M, et al. A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 1958, 181: 662–666PubMedCrossRefGoogle Scholar
  6. 6.
    Crick F H C. On protein synthesis. Symp Soc Exp Biol XII, 1958, 12: 138–163Google Scholar
  7. 7.
    Jacob F, Perrin D, Sanchez C, et al. The operon, a group of genes with expression coordinated by an operator. C R Acad Sci Paris, 1960, 250: 1727–1729PubMedGoogle Scholar
  8. 8.
    Nirenberg M W, Matthaei J H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA, 1961, 47: 1588–1602PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature, 1970, 226: 1209–1211PubMedCrossRefGoogle Scholar
  10. 10.
    Temin H M, Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature, 1970, 226: 1211–1213PubMedCrossRefGoogle Scholar
  11. 11.
    Linn S, Arber W. Host specificity of DNA produced by Escherichia coli, X. In vitro restriction of phage fd replicative form. Proc Natl Acad Sci USA, 1968, 59: 1300–1306PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Smith H, Wilcox K W. A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J Mol Biol, 1970, 51: 379–391PubMedCrossRefGoogle Scholar
  13. 13.
    Stehelin D, Fujita D J, Padgett T, et al. Detection and enumeration of transformation-defective strains of avian sarcoma virus with molecular hybridization. Virology, 1977, 76: 675–684PubMedCrossRefGoogle Scholar
  14. 14.
    Sanger F, Air G M, Barrell B G, et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature, 1977, 265: 687–695PubMedCrossRefGoogle Scholar
  15. 15.
    Saiki R, Scharf S, Mullis K B, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, 230: 1350–1354PubMedCrossRefGoogle Scholar
  16. 16.
    Sanger F, Coulson A R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol, 1975, 94: 441–448PubMedCrossRefGoogle Scholar
  17. 17.
    Gonzaga-Jauregui C, Lupski J R, Gibbs R A, et al. Human genome sequencing in health and disease. Annu Rev Med, 2012, 63: 35–61PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lander E S, Liton L M, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409: 860–921PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang X J, Huang W, Yang S, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene c luster at 1q21. Nat Genet, 2009, 41: 205–210PubMedCrossRefGoogle Scholar
  20. 20.
    Han J W, Zheng H F, Cui Y, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet, 2009, 41: 1234–1237PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang F R, Huang W, Chen S M, et al. Genomewide association study of leprosy. N Engl J Med, 2009, 361: 2609–2618PubMedCrossRefGoogle Scholar
  22. 22.
    Bei J X, Li Y, Jia W H, et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet, 2010, 42: 599–603PubMedCrossRefGoogle Scholar
  23. 23.
    Quan C, Ren Y Q, Xiang L H, et al. Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat Genet, 2010, 42: 614–618PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang H, Zhai Y, Hu Z, et al. Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet, 2010, 42: 755–758PubMedCrossRefGoogle Scholar
  25. 25.
    Wang L D, Zhou F Y, Li X M, et al. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet, 2010, 42: 759–763PubMedCrossRefGoogle Scholar
  26. 26.
    Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961–967PubMedCrossRefGoogle Scholar
  27. 27.
    Chen Z J, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet, 2011, 43: 55–59PubMedCrossRefGoogle Scholar
  28. 28.
    Wu C, Hu Z, He Z, et al. Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population. Nat Genet, 2011, 43: 345–349PubMedCrossRefGoogle Scholar
  29. 29.
    Wu C, Hu Z, He Z, et al. Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations. Nat Genet, 2011, 43: 679–684PubMedCrossRefGoogle Scholar
  30. 30.
    Sun L D, Xiao F L, Li Y, et al. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat Genet, 2011, 43: 690–694PubMedCrossRefGoogle Scholar
  31. 31.
    Hu Z, Wu C, Shi Y, et al. A genome-wide association stud y identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat Genet, 2011, 43: 792–796PubMedCrossRefGoogle Scholar
  32. 32.
    Chu X, Pan C M, Zhao S X, et al. A genome-wide association study identifies two new risk loci for Graves’ disease. Nat Genet, 2011, 43: 897–901PubMedCrossRefGoogle Scholar
  33. 33.
    Shi Y, Hu Z, Wu C, et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nat Genet, 2011, 43: 1215–1218PubMedCrossRefGoogle Scholar
  34. 34.
    Shi Y, Li Z, Xu Q, et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet, 2011, 43: 1224–1227PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yue W H, Wang H F, Sun L D, et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet, 2011, 43: 1228–1231PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang F, Liu H, Chen S, et al. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat Genet, 2011, 43: 1247–1251PubMedCrossRefGoogle Scholar
  37. 37.
    Huang X, Zhao Y, Wei X, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2011, 44: 32–39PubMedCrossRefGoogle Scholar
  38. 38.
    Wu C, Miao X, Huang L, et al. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet, 2011, 44: 62–66PubMedCrossRefGoogle Scholar
  39. 39.
    Lin Z, Bei J X, Shen M, et al. A genome-wide association study in Han Chinese identifies new susceptibility loci for ankylosing spondylitis. Nat Genet, 2011, 44: 73–77PubMedCrossRefGoogle Scholar
  40. 40.
    Yu X Q, Li M, Zhang H, et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet, 2011, 44: 178–182PubMedCrossRefGoogle Scholar
  41. 41.
    Hu Z, Xia Y, Guo X, et al. A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia. Nat Genet, 2011, 44: 183–186PubMedCrossRefGoogle Scholar
  42. 42.
    Lee Y C, Kuo H C, Chang J S, et al. Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat Genet, 2012, 44: 522–525PubMedCrossRefGoogle Scholar
  43. 43.
    Lu X, Wang L, Chen S, et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet, 2012, 44: 890–894PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Shi Y, Zhao H, Shi Y, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet, 2012, 44: 1020–1025PubMedCrossRefGoogle Scholar
  45. 45.
    Cheung C L, Lau K S, Ho A Y, et al. Genome-wide association study identifies a susceptibility locus for thyrotoxic periodic paralysis at 17q24.3. Nat Genet, 2012, 44: 1026–1029PubMedCrossRefGoogle Scholar
  46. 46.
    Wu C, Kraft P, Zhai K, et al. Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat Genet, 2012, 44: 1090–1097PubMedCrossRefGoogle Scholar
  47. 47.
    Xu J, Mo Z, Ye D, et al. Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31.2 and 19q13.4. Nat Genet, 2012, 44: 1231–1235PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Jiang D K, Sun J, Cao G, et al. Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma. Nat Genet, 2012, 45: 72–75PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Omenn G S, States D J, Adamski M, et al. Overview of the HUPO Plasma Proteome Project, results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics, 2005, 5: 3226–3245PubMedCrossRefGoogle Scholar
  50. 50.
    Deutsch E W, Eng J K, Zhang H, et al. Human plasma peptide atlas. Proteomics, 2005, 5: 3497–3500PubMedCrossRefGoogle Scholar
  51. 51.
    Sun A, Jiang Y, Wang X, et al. Liverbase, a comprehensive view of human liver biology. J Proteome Res, 2010, 9: 50–58PubMedCrossRefGoogle Scholar
  52. 52.
    Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 2010, 328: 974Google Scholar
  53. 53.
    Zhong F, Yang D, Hao Y, et al. Regular patterns for proteome-wide distribution of protein abundance across species. PLoS ONE, 2012, 7: e32423PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network, a resource for annotating the proteome. Cell, 2005, 122: 957–968PubMedCrossRefGoogle Scholar
  55. 55.
    Wang J, Huo K, Ma L, et al. Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol, 2011, 7: 536PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Pennisi E. Shining a light on the genome’s’ dark matter’. Science, 2010, 330: 1614PubMedCrossRefGoogle Scholar
  57. 57.
    Wapinski O, Chang H Y. Long noncoding RNAs and human disease. Trends Cell Biol, 2011, 21: 354–361PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Proteomics, Beijing Proteome Research CenterNational Center for Protein Science (Beijing)BeijingChina

Personalised recommendations