Systematic study of human long intergenic non-coding RNAs and their impact on cancer

Abstract

The functional impact of several long intergenic non-coding RNAs (lincRNAs) has been characterized in previous studies. However, it is difficult to identify lincRNAs on a large-scale and to ascertain their functions or predict their structures in laboratory experiments because of the diversity, lack of knowledge and specificity of expression of lincRNAs. Furthermore, although there are a few well-characterized examples of lincRNAs associated with cancers, these are just the tip of the iceberg owing to the complexity of cancer. Here, by combining RNA-Seq data from several kinds of human cell lines with chromatin-state maps and human expressed sequence tags, we successfully identified more than 3000 human lincRNAs, most of which were new ones. Subsequently, we predicted the functions of 105 lincRNAs based on a coding-non-coding gene co-expression network. Finally, we propose a genetic mediator and key regulator model to unveil the subtle relationships between lincRNAs and lung cancer. Twelve lincRNAs may be principal players in lung tumorigenesis. The present study combines large-scale identification and functional prediction of human lincRNAs, and is a pioneering work in characterizing cancer-associated lincRNAs by bioinformatics.

References

  1. 1

    Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458: 223–227

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  2. 2

    Khalil A M, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 2009, 106: 11667–11672

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  3. 3

    Cabili M N, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev, 2011, 25: 1915–1927

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  4. 4

    Trapnell C, Williams B A, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28: 511–515

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  5. 5

    Guttman M, Garber M, Levin J Z, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol, 2010, 28: 503–510

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  6. 6

    Sone M, Hayashi T, Tarui H, et al. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci, 2007, 120: 2498–2506

    PubMed  CAS  Article  Google Scholar 

  7. 7

    Mercer T R, Dinger M E, Sunkin S M, et al. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA, 2008, 105: 716–721

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  8. 8

    Mercer T R, Dinger M E, Mattick J S. Long non-coding RNAs: insights into functions. Nat Rev Genet, 2009, 10: 155–159

    PubMed  CAS  Article  Google Scholar 

  9. 9

    Wilusz J E, Sunwoo H, Spector D L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 2009, 23: 1494–1504

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  10. 10

    Yamasaki C, Murakami K, Fujii Y, et al. The H-Invitational Database (H-InvDB), a comprehensive annotation resource for human genes and transcripts. Nucleic Acids Res, 2008, 36: D793–799

    PubMed  CAS  Google Scholar 

  11. 11

    Harrow J, Denoeud F, Frankish A, et al. GENCODE: producing a reference annotation for ENCODE. Genome Biol, 2006, 7: S41–49

    Article  Google Scholar 

  12. 12

    Pruitt K D, Tatusova T, Maglott D R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res, 2007, 35: D61–65

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  13. 13

    Bono H, Kasukawa T, Furuno M, et al. FANTOM DB: database of Functional Annotation of RIKEN Mouse cDNA Clones. Nucleic Acids Res, 2002, 30: 116–118

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  14. 14

    Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458: 223–227

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  15. 15

    Khalil A, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 2009, 106: 11667

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  16. 16

    Guttman M, Garber M, Levin J Z, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol, 2010, 28: 503–510

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  17. 17

    Cabili M N, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev, 2011, 25: 1915–1927

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  18. 18

    Rinn J, Kertesz M, Wang J, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007, 129: 1311–1323

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  19. 19

    Nagano T, Mitchell J A, Sanz L A, et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science, 2008, 322: 1717–1720

    PubMed  CAS  Article  Google Scholar 

  20. 20

    Pandey R R, Mondal T, Mohammad F, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell, 2008, 32: 232–246

    PubMed  CAS  Article  Google Scholar 

  21. 21

    Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010, 142: 409–419

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  22. 22

    Liao Q, Liu C, Yuan X, et al. Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res, 2011, 39: 3864–3878

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  23. 23

    Gupta R A, Shah N, Wang K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464: 1071–1076

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  24. 24

    Huarte M, Rinn J L. Large non-coding RNAs: missing links in cancer? Hum Mol Genet, 2010, 19: R152–161

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  25. 25

    Chen G, Wang Z, Wang D, et al. LncRNADisease: a database for long noncoding RNA associated diseases. Nucleic Acids Res, 2013, 41: D983–986

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  26. 26

    Bernstein B E, Birney E, Dunham I, et al. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489: 57–74

    Article  Google Scholar 

  27. 27

    Fejes A P, Robertson G, Bilenky M, et al. FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics, 2008, 24: 1729–1730

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  28. 28

    Kong L, Zhang Y, Ye Z Q, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res, 2007, 35: W345–349

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Dunham I, Kundaje A, Aldred S F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489: 57–74

    CAS  Article  Google Scholar 

  30. 30

    Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol, 2005, 4: Article17

    Google Scholar 

  31. 31

    Nayak R R, Kearns M, Spielman R S, et al. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions. Genome Res, 2009, 19: 1953–1962

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  32. 32

    Berkofsky-Fessler W, Nguyen T Q, Delmar P, et al. Preclinical biomarkers for a cyclin-dependent kinase inhibitor translate to candidate pharmacodynamic biomarkers in phase I patients. Mol Cancer Ther, 2009, 8: 2517–2525

    PubMed  CAS  Article  Google Scholar 

  33. 33

    Ergun A, Lawrence C A, Kohanski M A, et al. A network biology approach to prostate cancer. Mol Syst Biol, 2007, 3: 82

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    di Bernardo D, Thompson M J, Gardner T S, et al. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol, 2005, 23: 377–383

    PubMed  Article  Google Scholar 

  35. 35

    Ding L, Getz G, Wheeler D A, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008, 455: 1069–1075

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  36. 36

    Segal E, Friedman N, Koller D, et al. A module map showing conditional activity of expression modules in cancer. Nat Genet, 2004, 36: 1090–1098

    PubMed  CAS  Article  Google Scholar 

  37. 37

    Saijo T, Ishii G, Ochiai A, et al. Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimitotic agents combined with platinum chemotherapy. Lung Cancer, 2006, 54: 217–225

    PubMed  Article  Google Scholar 

  38. 38

    Okazaki Y, Furuno M, Kasukawa T, et al. Analysis of the mouse transcriptome based on functional annotation of 60770 full-length cDNAs. Nature, 2002, 420: 563–573

    PubMed  Article  Google Scholar 

  39. 39

    Metzker M L. Sequencing technologies—the next generation. Nat Rev Genet, 2010, 11: 31–46

    PubMed  CAS  Article  Google Scholar 

  40. 40

    Wang E T, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature, 2008, 456: 470–476

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  41. 41

    Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5: 621–628

    PubMed  CAS  Article  Google Scholar 

  42. 42

    Maher C A, Kumar-Sinha C, Cao X, et al. Transcriptome sequencing to detect gene fusions in cancer. Nature, 2009, 458: 97–101

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  43. 43

    Pan Q, Shai O, Lee L J, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet, 2008, 40: 1413–1415

    PubMed  CAS  Article  Google Scholar 

  44. 44

    Orom U A, Derrien T, Beringer M, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell, 2010, 143: 46–58

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  45. 45

    Tripathi V, Ellis J D, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell, 2010, 39: 925–938

    PubMed  CAS  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to YuanNing Liu or Yi Zhao.

Additional information

Contributed equally to this work

This article is published with open access at Springerlink.com

Electronic supplementary material

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Sun, L., Luo, H., Liao, Q. et al. Systematic study of human long intergenic non-coding RNAs and their impact on cancer. Sci. China Life Sci. 56, 324–334 (2013). https://doi.org/10.1007/s11427-013-4460-x

Download citation

Keywords

  • lincRNA
  • identification
  • functional annotation
  • cancer