Science China Life Sciences

, Volume 56, Issue 3, pp 268–274 | Cite as

Complete genome sequence of methicillin-sensitive Staphylococcus aureus containing a heterogeneic staphylococcal cassette chromosome element

  • DeZhi Li
  • YaNan Chu
  • LuFeng Ren
  • XinGang Li
  • Lina Yuan
  • Yu Kang
  • Wei Zhang
  • Yu Yang
  • XuMin Wang
  • J. Kenneth Baillie
  • Jun Yu
  • ZhanCheng Gao
Open Access
Research Paper
  • 941 Downloads

Abstract

Staphylococcus aureus is a common human bacterium that sometimes becomes pathogenic, causing serious infections. A key feature of S. aureus is its ability to acquire resistance to antibiotics. The presence of the staphylococcal cassette chromosome (SCC) element in serotypes of S. aureus has been confirmed using multiplex PCR assays. The SCC element is the only vector known to carry the mecA gene, which encodes methicillin resistance in S. aureus infections. Here, we report the genome sequence of a novel methicillin-sensitive S. aureus (MSSA) strain: SCC-like MSSA463. This strain was originally erroneously serotyped as methicillin-resistant S. aureus in a clinical laboratory using multiplex PCR methods. We sequenced the genome of SCC-like MSSA463 using pyrosequencing techniques and compared it with known genome sequences of other S. aureus isolates. An open reading frame (CZ049; AB037671) was identified downstream of attL and attR inverted repeat sequences. Our results suggest that a lateral gene transfer occurred between S. aureus and other organisms, partially changing S. aureus infectivity. We propose that attL and attR inverted repeats in S. aureus serve as frequent insertion sites for exogenous genes.

Keywords

Staphylococcus aureus staphylococcal cassette chromosome mec (SCC-mec) genomics pyrosequencing 

Supplementary material

11427_2013_4453_MOESM1_ESM.pdf (640 kb)
Supplementary material, approximately 640 KB.

References

  1. 1.
    Hiramatsu K, Aritaka N, Hanaki H, et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet, 1997, 350: 1670–1673PubMedCrossRefGoogle Scholar
  2. 2.
    Vancomycin-resistant Staphylococcus aureus -New York, 2004. MMWR Morb Mortal Wkly Rep, 2004, 53: 322–323Google Scholar
  3. 3.
    Jones R N, Kohno S, Ono Y, et al. ZAAPS International Surveillance Program (2007) for linezolid resistance: results from 5591 Gram-positive clinical isolates in 23 countries. Diagn Micr Infec Dis, 2009, 64: 191–201CrossRefGoogle Scholar
  4. 4.
    Pantosti A, Sanchini A, Monaco M. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol, 2007, 2: 323–334PubMedCrossRefGoogle Scholar
  5. 5.
    Corkill J E, Anson J J, Griffiths P, et al. Detection of elements of the staphylococcal cassette chromosome (SCC) in a methicillin-susceptible (mecA gene negative) homologue of a fucidin-resistant MRSA. J Antimicrob Chemother, 2004, 54: 229–231PubMedCrossRefGoogle Scholar
  6. 6.
    Holden M T, Feil E J, Lindsay J A, et al. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci USA, 2004, 101: 9786–9791PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Li D Z, Chen Y S, Yang J P, et al. Preliminary molecular epidemiology of the Staphylococcus aureus in lower respiratory tract infections: a multicenter study in China. Chin Med J (Engl), 2011, 124: 687–692CrossRefGoogle Scholar
  8. 8.
    Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437: 376–380PubMedPubMedCentralGoogle Scholar
  9. 9.
    Delcher A L, Bratke K A, Powers E C, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics, 2007, 23: 673–679PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res, 1996, 24: 21–25PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27–30PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Mulder N J, Apweiler R, Attwood T K, et al. InterPro: an integrated documentation resource for protein families, domains and functional sites. Brief Bioinform, 2002, 3: 225–235PubMedCrossRefGoogle Scholar
  13. 13.
    Harris M A, Clark J, Ireland A, et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res, 2004, 32: D258–261PubMedCrossRefGoogle Scholar
  14. 14.
    Carver T J, Rutherford K M, Berriman M, et al. ACT: the Artemis Comparison Tool. Bioinformatics, 2005, 21: 3422–3423PubMedCrossRefGoogle Scholar
  15. 15.
    Lindsay J A, Holden M T. Staphylococcus aureus: superbug, super genome? Trends Microbiol, 2004, 12: 378–385PubMedCrossRefGoogle Scholar
  16. 16.
    Hsiao A, Liu Z, Joelsson A, et al. Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc Natl Acad Sci USA, 2006, 103: 14542–14547PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Letunic I, Bork P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res, 2011, 39: W475–W478PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Mostowy S, Cossart P. Cytoskeleton rearrangements during listeria infection: clathrin and septins as new players in the game. Cell Motil Cytoskel, 2009, 66: 816–823CrossRefGoogle Scholar
  19. 19.
    Wang B N, Li S Y, Dedhar S, et al. Paxillin phosphorylation: bifurcation point downstream of integrin-linked kinase (ILK) in streptococcal invasion. Cell Microbiol, 2007, 9: 1519–1528PubMedCrossRefGoogle Scholar
  20. 20.
    Matsumoto H, Young G M. Translocated effectors of Yersinia. Curr Opin Microbiol, 2009, 12: 94–100PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Iwai H, Kim M, Yoshikawa Y, et al. A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling. Cell, 2007, 130: 611–623PubMedCrossRefGoogle Scholar
  22. 22.
    Petri W A, Haque R, Mann B J. The bittersweet interface of parasite and host: Lectin-carbohydrate interactions during human invasion by the parasite Entamoeba histolytica. Annu Rev Microbiol, 2002, 56: 39–64PubMedCrossRefGoogle Scholar
  23. 23.
    Gerhard M, Rad R, Prinz C, et al. Pathogenesis of Helicobacter pylori infection. Helicobacter, 2002, 7: 17–23PubMedCrossRefGoogle Scholar
  24. 24.
    Montecucco C, Rappuoli R. Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Bio, 2001, 2: 457–466CrossRefGoogle Scholar
  25. 25.
    Klotz M G, Loewen P C. The molecular evolution of catalatic hydroperoxidases: Evidence for multiple lateral transfer of genes between prokaryota and from bacteria into Eukaryota. Mol Biol Evol, 2003, 20: 1098–1112PubMedCrossRefGoogle Scholar
  26. 26.
    Keeling P J, Palmer J D. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet, 2008, 9: 605–618PubMedCrossRefGoogle Scholar
  27. 27.
    Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother, 2000, 44: 1549–1555PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zhang K Y, McClure J A, Elsayed S, et al. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillinresistant Staphylococcus aureus. J Clin Microbiol, 2005, 43: 5026–5033PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Higuchi W, Takano T, Teng L J, et al. Structure and specific detection of staphylococcal cassette chromosome mec type VII. Biochem Bioph Res Co, 2008, 377: 752–756CrossRefGoogle Scholar
  30. 30.
    Ito T, Ma X X, Takeuchi F, et al. Novel type v staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother, 2004, 48: 2637–2651PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Robinson D A, Enright M C. Evolution of Staphylococcus aureus by large chromosomal replacements. J Bacteriol, 2004, 186: 1060–1064PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Price L B, Stegger M, Hasman H, et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. Mbio, 2012, 3: e00305–00311PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • DeZhi Li
    • 1
    • 2
  • YaNan Chu
    • 3
    • 4
  • LuFeng Ren
    • 3
    • 4
  • XinGang Li
    • 3
    • 4
  • Lina Yuan
    • 3
    • 4
  • Yu Kang
    • 3
  • Wei Zhang
    • 5
  • Yu Yang
    • 6
  • XuMin Wang
    • 3
  • J. Kenneth Baillie
    • 7
    • 8
  • Jun Yu
    • 3
    • 4
  • ZhanCheng Gao
    • 1
  1. 1.Department of Respiratory and Critical Care MedicinePeking University People’s HospitalBeijingChina
  2. 2.Department of Respiratory Medicine, Shandong Provincial HospitalShandong UniversityJinanChina
  3. 3.CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  4. 4.The DNA Sequencing Technologies R&D Center, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  5. 5.Department of Respiratory MedicineFirst Affiliated Hospital of Nanchang UniversityNanchangChina
  6. 6.Chinese Academy of Inspection and QuarantineBeijingChina
  7. 7.Division of Genetics and Genomics, The Roslin InstituteUniversity of EdinburghRoslinUK
  8. 8.Department of Critical Care MedicineUniversity of EdinburghEdinburghUK

Personalised recommendations