Science China Life Sciences

, Volume 56, Issue 2, pp 125–133 | Cite as

Dawn of ocular gene therapy: implications for molecular diagnosis in retinal disease

  • Jacques Zaneveld
  • Feng Wang
  • Xia Wang
  • Rui ChenEmail author
Open Access
Review Special Topic


Personalized medicine aims to utilize genomic information about patients to tailor treatment. Gene replacement therapy for rare genetic disorders is perhaps the most extreme form of personalized medicine, in that the patients’ genome wholly determines their treatment regimen. Gene therapy for retinal disorders is poised to become a clinical reality. The eye is an optimal site for gene therapy due to the relative ease of precise vector delivery, immune system isolation, and availability for monitoring of any potential damage or side effects. Due to these advantages, clinical trials for gene therapy of retinal diseases are currently underway. A necessary precursor to such gene therapies is accurate molecular diagnosis of the mutation(s) underlying disease. In this review, we discuss the application of Next Generation Sequencing (NGS) to obtain such a diagnosis and identify disease causing genes, using retinal disorders as a case study. After reviewing ocular gene therapy, we discuss the application of NGS to the identification of novel Mendelian disease genes. We then compare current, array based mutation detection methods against next NGS-based methods in three retinal diseases: Leber’s Congenital Amaurosis, Retinitis Pigmentosa, and Stargardt’s disease. We conclude that next-generation sequencing based diagnosis offers several advantages over array based methods, including a higher rate of successful diagnosis and the ability to more deeply and efficiently assay a broad spectrum of mutations. However, the relative difficulty of interpreting sequence results and the development of standardized, reliable bioinformatic tools remain outstanding concerns. In this review, recent advances NGS based molecular diagnoses are discussed, as well as their implications for the development of personalized medicine.


next-generation sequencing (NGS) retinal disease molecular diagnosis Leber’s Congenital Amarosis (LCA) Retinitus Pigmentosa (RP) Stargardt disease APEX personal medicine 


  1. 1.
    Meyer U A. Personalized medicine: a personal view. Clin Pharmacol Ther, 2012, 91: 373–375PubMedGoogle Scholar
  2. 2.
    Sieving P A, Caruso R C, Tao W, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: Phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci USA, 2006, 103: 3896–3901PubMedPubMedCentralGoogle Scholar
  3. 3.
    Nguyen Q D, Schachar R A, Nduaka C I, et al. Phase 1 dose-escalation study of a siRNA targeting the RTP801 gene in age-related macular degeneration patients. Eye, 2012Google Scholar
  4. 4.
    Hauswirth W W, Aleman T S, Kaushal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther, 2008, 19: 979–990PubMedPubMedCentralGoogle Scholar
  5. 5.
    Cideciyan A V, Aleman T S, Boye S L, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA, 2008, 105: 15112–15117PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bainbridge J W B, Smith A J, Barker S S, et al. Effect of gene therapy on visual function in Leber’s Congenital Amaurosis. N Engl J Med, 2008, 358: 2231–2239PubMedGoogle Scholar
  7. 7.
    Maguire A M, Simonelli F, Pierce E A, et al. Safety and efficacy of gene transfer for Leber’s Congenital Amaurosis. N Engl J Med, 2008, 358: 2240–2248PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bennett J, Ashtari M, Wellman J, et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med, 2012, 4: 120ra15PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kinnunen K, Yla-Herttuala S. Gene therapy in age related macular degeneration and hereditary macular disorders. Front Biosci (Elite Ed), 2012, 4: 2546–2557Google Scholar
  10. 10.
    Carter-Dawson L D, LaVail M M, Sidman R L. Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci, 1978, 17: 489–498PubMedGoogle Scholar
  11. 11.
    Weng J, Mata N L, Azarian S M, et al. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell, 1999, 98: 13–23PubMedGoogle Scholar
  12. 12.
    Lem J, Flannery J G, Li T, et al. Retinal degeneration is rescued in transgenic rd mice by expression of the cGMP phosphodiesterase beta subunit. Proc Natl Acad Sci USA, 1992, 89: 4422–4426PubMedPubMedCentralGoogle Scholar
  13. 13.
    Bennett J, Tanabe T, Sun D, et al. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nat Med, 1996, 2: 649–654PubMedGoogle Scholar
  14. 14.
    Palfi A, Millington-Ward S, Chadderton N, et al. Adeno-associated virus-mediated rhodopsin replacement provides therapeutic benefit in mice with a targeted disruption of the rhodopsin gene. Hum Gene Ther, 2010, 21: 311–323PubMedGoogle Scholar
  15. 15.
    Koch S, Sothilingam V, Garrido M G, et al. Gene therapy restores vision and delays degeneration in the CNGB1-/- mouse model of retinitis pigmentosa. Hum Mol Genet, 2012Google Scholar
  16. 16.
    Zhang K, Zhang L, Weinreb R N. Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma. Nat Rev Drug Discov, 2012, 11: 541–559PubMedGoogle Scholar
  17. 17.
    Daiger S P. Retinal Information Network., 1996
  18. 18.
    den Hollander A I, Roepman R, Koenekoop R K, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res, 2008, 27: 391–419Google Scholar
  19. 19.
    Neveling K, Collin R W, Gilissen C, et al. Next-generation genetic testing for retinitis pigmentosa. Hum Mutat, 33: 963–972Google Scholar
  20. 20.
    O’sullivan J, Mullaney B G, Bhaskar S S, et al. A paradigm shift in the delivery of services for diagnosis of inherited retinal disease. J Med Genet, 49: 322–326Google Scholar
  21. 21.
    Niederkorn J Y. Ocular immune privilege and ocular melanoma: parallel universes or immunological plagiarism? Front Immunol, 2012, 3: 148PubMedPubMedCentralGoogle Scholar
  22. 22.
    Friedmann T, Roblin R. Gene therapy for human genetic disease? Science, 1972, 175: 949–955PubMedGoogle Scholar
  23. 23.
    Liu M M, Tuo J, Chan C C. Gene therapy for ocular diseases. Br J Ophthalmol, 2011, 95: 604–612PubMedPubMedCentralGoogle Scholar
  24. 24.
    Samulski R J, Berns K I, Tan M, et al. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA, 1982, 79: 2077–2081PubMedPubMedCentralGoogle Scholar
  25. 25.
    Hermonat P L, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA, 1984, 81: 6466–6470PubMedPubMedCentralGoogle Scholar
  26. 26.
    Mori S, Wang L, Takeuchi T, et al. Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. Virology, 2004, 330: 375–383PubMedGoogle Scholar
  27. 27.
    Klimczak R R, Koerber J T, Dalkara D, et al. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Muller cells. PLoS ONE, 2009, 4: e7467PubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhong L, Li B, Mah C S, et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA, 2008, 105: 7827–7832PubMedPubMedCentralGoogle Scholar
  29. 29.
    Vandenberghe L H, Auricchio A. Novel adeno-associated viral vectors for retinal gene therapy. Gene Ther, 2012, 19: 162–168PubMedGoogle Scholar
  30. 30.
    Petrs-Silva H, Dinculescu A, Li Q, et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther, 2008, 17: 463–471PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kolstad K D, Dalkara D, Guerin K, et al. Changes in adeno-associated virus-mediated gene delivery in retinal degeneration. Hum Gene Ther, 2010, 21: 571–578PubMedPubMedCentralGoogle Scholar
  32. 32.
    Auricchio A, Kobinger G, Anand V, et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet, 2001, 10: 3075–3081PubMedGoogle Scholar
  33. 33.
    Pang J J, Dai X, Boye S E, et al. Long-term retinal function and structure rescue using capsid mutant AAV8 vector in the rd10 mouse, a model of recessive retinitis pigmentosa. Mol Ther, 2011, 19: 234–242PubMedPubMedCentralGoogle Scholar
  34. 34.
    Deng W T, Dinculescu A, Li Q, et al. Tyrosine-mutant AAV8 delivery of human MERTK provides long-term retinal preservation in RCS rats. Invest Ophthalmol Vis Sci, 2012, 53: 1895–1904PubMedPubMedCentralGoogle Scholar
  35. 35.
    Acland G M, Aguirre G D, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet, 2001, 28: 92–95PubMedGoogle Scholar
  36. 36.
    Mancuso K, Hauswirth W W, Li Q, et al. Gene therapy for red-green colour blindness in adult primates. Nature, 2009, 461: 784–787PubMedPubMedCentralGoogle Scholar
  37. 37.
    Yang Y, Mohand-Said S, Danan A, et al. Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. Mol Ther, 2009, 17: 787–795PubMedPubMedCentralGoogle Scholar
  38. 38.
    Min S H, Molday L L, Seeliger M W, et al. Prolonged recovery of retinal structure/function after gene therapy in an Rs1h-deficient mouse model of X-linked juvenile retinoschisis. Mol Ther, 2005, 12: 644–651PubMedGoogle Scholar
  39. 39.
    Beltran W A, Cideciyan A V, Lewin A S, et al. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci USA, 2012, 109: 2132–2137PubMedPubMedCentralGoogle Scholar
  40. 40.
    Koilkonda R D, Chou T H, Porciatti V, et al. Induction of rapid and highly efficient expression of the human nd4 complex i subunit in the mouse visual system by self-complementary adeno-associated virus. Arch Ophthalmol, 2010, 128: 876–883PubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang K, Hopkins J J, Heier J S, et al. Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration. Proc Natl Acad Sci USA, 2011, 108: 6241–6245PubMedPubMedCentralGoogle Scholar
  42. 42.
    Schwartz S D, Hubschman J P, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet, 2012, 379: 713–720PubMedGoogle Scholar
  43. 43.
    Seiler M J, Aramant R B. Cell replacement and visual restoration by retinal sheet transplants. Prog Ret Eye Res, 2012,
  44. 44.
    Tibbetts M D, Samuel M A, Chang T S, et al. Stem cell therapy for retinal disease. Curr Opin Ophthalmol, 2012, 23: 226–234PubMedGoogle Scholar
  45. 45.
    Phillips M I. Gene, stem cell, and future therapies for orphan diseases. Clin Pharmacol Ther, 2012, 92: 182–192PubMedGoogle Scholar
  46. 46.
    Koenekoop R K, Lopez I, den Hollander A I, et al. Genetic testing for retinal dystrophies and dysfunctions: benefits, dilemmas and solutions. Clin Experiment Ophthalmol, 2007, 35: 473–485PubMedGoogle Scholar
  47. 47.
    Riordan J R, Rommens J M, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, 1989, 245: 1066–1073PubMedGoogle Scholar
  48. 48.
    Gusella J F, Wexler N S, Conneally P M, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature, 1983, 306: 234–238PubMedGoogle Scholar
  49. 49.
    Ng S B, Buckingham K J, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet, 2010, 42: 30–35PubMedPubMedCentralGoogle Scholar
  50. 50.
    Rabbani B, Mahdieh N, Hosomichi K, et al. Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. J Hum Genet, 2012, 57: 621–632PubMedGoogle Scholar
  51. 51.
    Wang Y, Guo L, Cai S P, et al. Exome sequencing identifies compound heterozygous mutations in CYP4V2 in a pedigree with retinitis pigmentosa. PLoS ONE, 2012, 7: e33673PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hughes A E, Meng W, Lotery A J, et al. A novel GUCY2D mutation, V933A, causes central areolar choroidal dystrophy. Invest Ophthalmol Vis Sci, 2012, 53: 4748–4753PubMedGoogle Scholar
  53. 53.
    Koenekoop R K, Wang H, Majewski J, et al. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat Genet, 2012, 44: 1035–1039PubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhi D, Chen R. Statistical guidance for experimental design and data analysis of mutation detection in rare monogenic mendelian diseases by exome sequencing. PLoS ONE, 2012, 7: e31358PubMedPubMedCentralGoogle Scholar
  55. 55.
    Bowne S J, Sullivan L S, Mortimer S E, et al. Spectrum and frequency of mutations in IMPDH1 associated with autosomal dominant retinitis pigmentosa and leber congenital amaurosis. Invest Ophthalmol Vis Sci, 2006, 47: 34–42PubMedPubMedCentralGoogle Scholar
  56. 56.
    den Hollander A I, Heckenlively J R, van den Born L I, et al. Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am J Hum Genet, 2001, 69: 198–203PubMedCentralGoogle Scholar
  57. 57.
    den Hollander A I, Koenekoop R K, Mohamed M D, et al. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat Genet, 2007, 39: 889–895Google Scholar
  58. 58.
    den Hollander A I, Koenekoop R K, Yzer S, et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet, 2006, 79: 556–561Google Scholar
  59. 59.
    Dryja T P, Adams S M, Grimsby J L, et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet, 2001, 68: 1295–1298PubMedPubMedCentralGoogle Scholar
  60. 60.
    Estrada-Cuzcano A, Koenekoop R K, Coppieters F, et al. IQCB1 mutations in patients with Leber congenital amaurosis. Invest Ophthalmol Vis Sci, 2011, 52: 834–839PubMedGoogle Scholar
  61. 61.
    Freund C L, Wang Q L, Chen S, et al. De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis. Nat Genet, 1998, 18: 311–312PubMedGoogle Scholar
  62. 62.
    Friedman J S, Chang B, Kannabiran C, et al. Premature truncation of a novel protein, RD3, exhibiting subnuclear localization is associated with retinal degeneration. Am J Hum Genet, 2006, 79: 1059–1070PubMedPubMedCentralGoogle Scholar
  63. 63.
    Henderson R H, Williamson K A, Kennedy J S, et al. A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction. Mol Vis, 2009, 15: 2442–2447PubMedPubMedCentralGoogle Scholar
  64. 64.
    Janecke A R, Thompson D A, Utermann G, et al. Mutations in RDH12 encoding a photoreceptor cell retinol dehydrogenase cause childhood-onset severe retinal dystrophy. Nat Genet, 2004, 36: 850–854PubMedGoogle Scholar
  65. 65.
    Marlhens F, Bareil C, Griffoin J M, et al. Mutations in RPE65 cause Leber’s congenital amaurosis. Nat Genet, 1997, 17: 139–141PubMedGoogle Scholar
  66. 66.
    Mataftsi A, Schorderet D F, Chachoua L, et al. Novel TULP1 mutation causing leber congenital amaurosis or early onset retinal degeneration. Invest Ophthalmol Vis Sci, 2007, 48: 5160–5167PubMedGoogle Scholar
  67. 67.
    Perrault I, Hanein S, Gerber S, et al. Retinal dehydrogenase 12 (RDH12) mutations in leber congenital amaurosis. Am J Hum Genet, 2004, 75: 639–646PubMedPubMedCentralGoogle Scholar
  68. 68.
    Perrault I, Rozet J M, Calvas P, et al. Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet, 1996, 14: 461–464PubMedGoogle Scholar
  69. 69.
    Sohocki M M, Bowne S J, Sullivan L S, et al. Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. Nat Genet, 2000, 24: 79–83PubMedPubMedCentralGoogle Scholar
  70. 70.
    Stone E M, Cideciyan A V, Aleman T S, et al. Variations in NPHP5 in patients with nonsyndromic leber congenital amaurosis and Senior-Loken syndrome. Arch Ophthalmol, 2011, 129: 81–87PubMedPubMedCentralGoogle Scholar
  71. 71.
    Wang H, den Hollander A I, Moayedi Y, et al. Mutations in SPATA7 cause Leber congenital amaurosis and juvenile retinitis pigmentosa. Am J Hum Genet, 2009, 84: 380–387PubMedPubMedCentralGoogle Scholar
  72. 72.
    Sergouniotis P I, Davidson A E, Mackay D S, et al. Recessive mutations in KCNJ13, encoding an inwardly rectifying potassium channel subunit, cause leber congenital amaurosis. Am J Hum Genet, 2011, 89: 183–190PubMedPubMedCentralGoogle Scholar
  73. 73.
    Daiger P, Rossiter B, Greenberg J, et al. Data services and software for identifying genes and mutations causing retinal degeneration. 1998, 39: 2Google Scholar
  74. 74.
    Xi Q, Li L, Traboulsi E I, et al. Novel ABCA4 compound heterozygous mutations cause severe progressive autosomal recessive cone-rod dystrophy presenting as Stargardt disease. Mol Vis, 2009, 15: 638–645PubMedPubMedCentralGoogle Scholar
  75. 75.
    Kurg A, Tonisson N, Georgiou I, et al. Arrayed primer extension: solid-phase four-color DNA resequencing and mutation detection technology. Genet Test, 2000, 4: 1–7PubMedGoogle Scholar
  76. 76.
    Henderson R H, Waseem N, Searle R, et al. An assessment of the apex microarray technology in genotyping patients with Leber congenital amaurosis and early-onset severe retinal dystrophy. Invest Ophthalmol Vis Sci, 2007, 48: 5684–5689PubMedGoogle Scholar
  77. 77.
    Yzer S, Leroy B P, De Baere E, et al. Microarray-based mutation detection and phenotypic characterization of patients with Leber congenital amaurosis. Invest Ophthalmol Vis Sci, 2006, 47: 1167–1176PubMedGoogle Scholar
  78. 78.
    Zernant J, Kulm M, Dharmaraj S, et al. Genotyping microarray (disease chip) for Leber congenital amaurosis: detection of modifier alleles. Invest Ophthalmol Vis Sci, 2005, 46: 3052–3059PubMedGoogle Scholar
  79. 79.
    Bogni S, Schoni D, Constantinescu M, et al. Tissue fusion, a new opportunity for sutureless bypass surgery. Acta Neurochir Suppl, 2011, 112: 45–53PubMedGoogle Scholar
  80. 80.
    Avila-Fernandez A, Cantalapiedra D, Aller E, et al. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray. Mol Vis, 2010, 16: 2550–2558PubMedPubMedCentralGoogle Scholar
  81. 81.
    Blanco-Kelly F, Garcia-Hoyos M, Corton M, et al. Genotyping microarray: mutation screening in Spanish families with autosomal dominant retinitis pigmentosa. Mol Vis, 2012, 18: 1478–1483PubMedPubMedCentralGoogle Scholar
  82. 82.
    Allard R E. Retinitis pigmentosa—an overview. J Am Optom Assoc, 1983, 54: 793–800PubMedGoogle Scholar
  83. 83.
    Franceschetti A, Dieterle P. Diagnostic and prognostic importance of the electroretinogram in tapetoretinal degeneration with reduction of the visual field and hemeralopia. Confin Neurol, 1954, 14: 184–186PubMedGoogle Scholar
  84. 84.
    Dharmaraj S R, Silva E R, Pina A L, et al. Mutational analysis and clinical correlation in Leber congenital amaurosis. Ophthalmic Genet, 2000, 21: 135–150PubMedGoogle Scholar
  85. 85.
    Stone E M. Leber congenital amaurosis—a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol, 2007, 144: 791–811PubMedGoogle Scholar
  86. 86.
    Xu F, Dong Q, Liu L, et al. Novel RPE65 mutations associated with Leber congenital amaurosis in Chinese patients. Mol Vis, 2012, 18: 744–750PubMedPubMedCentralGoogle Scholar
  87. 87.
    Seong M W, Kim S Y, Yu Y S, et al. Molecular characterization of Leber congenital amaurosis in Koreans. Mol Vis, 2008, 14: 1429–1436PubMedPubMedCentralGoogle Scholar
  88. 88.
    Downs K, Zacks D N, Caruso R, et al. Molecular testing for hereditary retinal disease as part of clinical care. Arch Ophthalmol, 2007, 125: 252–258PubMedGoogle Scholar
  89. 89.
    Zernant J, Schubert C, Im K M, et al. Analysis of the ABCA4 gene by next-generation sequencing. Invest Ophthalmol Vis Sci, 2011, 52: 8479–8487PubMedPubMedCentralGoogle Scholar
  90. 90.
    Coppieters F, De Wilde B, Lefever S, et al. Massively parallel sequencing for early molecular diagnosis in Leber congenital amaurosis. Genet Med, 2012, 14: 576–585PubMedGoogle Scholar
  91. 91.
    Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis, 2006, 1: 40PubMedPubMedCentralGoogle Scholar
  92. 92.
    Piersma A H, Hernandez L G, van Benthem J, et al. Reproductive toxicants have a threshold of adversity. Crit Rev Toxicol, 2011, 41: 545–554PubMedGoogle Scholar
  93. 93.
    Pagon R A, Daiger S P. Retinitis pigmentosa overview. In: Pagon R A, Bird T D, Dolan C R, et al., eds. GeneReviews. Seattle: University of Washington, 1993Google Scholar
  94. 94.
    Sohocki M M, Daiger S P, Bowne S J, et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat, 2001, 17: 42–51PubMedPubMedCentralGoogle Scholar
  95. 95.
    de Bie M K, van Rees J B, Herzog C A, et al. How to reduce the incidence of contrast induced acute kidney injury after cardiac invasive procedures, a review and practical recommendations. Curr Med Res Opin, 2011, 27: 1347–1357PubMedGoogle Scholar
  96. 96.
    Gonzalez-Rodriguez M L, Rabasco A M. Charged liposomes as carriers to enhance the permeation through the skin. Expert Opin Drug Deliv, 2011, 8: 857–871PubMedGoogle Scholar
  97. 97.
    Vijverberg S J, Koenderman L, Koster E S, et al. Biomarkers of therapy responsiveness in asthma: pitfalls and promises. Clin Exp Allergy, 2011, 41: 615–629PubMedGoogle Scholar
  98. 98.
    Burke T R, Tsang S H. Allelic and phenotypic heterogeneity in ABCA4 mutations. Ophthalmic Genet, 2011, 32: 165–174PubMedPubMedCentralGoogle Scholar
  99. 99.
    Kaplan J, Gerber S, Larget-Piet D, et al. A gene for Stargardt’s disease (fundus flavimaculatus) maps to the short arm of chromosome 1. Nat Genet, 1993, 5: 308–311PubMedGoogle Scholar
  100. 100.
    Edwards A O, Donoso L A, Ritter R 3rd. A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Invest Ophthalmol Vis Sci, 2001, 42: 2652–2663PubMedGoogle Scholar
  101. 101.
    Vrabec T R, Tantri A, Edwards A, et al. Autosomal dominant Stargardt-like macular dystrophy: identification of a new family with a mutation in the ELOVL4 gene. Am J Ophthalmol, 2003, 136: 542–545PubMedGoogle Scholar
  102. 102.
    Kniazeva M, Chiang M F, Morgan B, et al. A new locus for autosomal dominant stargardt-like disease maps to chromosome 4. Am J Hum Genet, 1999, 64: 1394–1399PubMedPubMedCentralGoogle Scholar
  103. 103.
    Quazi F, Lenevich S, Molday R S. ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer. Nat Commun, 2012, 3: 925PubMedPubMedCentralGoogle Scholar
  104. 104.
    Dornstauder B, Suh M, Kuny S, et al. Dietary docosahexaenoic acid supplementation prevents age-related functional losses and A2E accumulation in the retina. Invest Ophthalmol Vis Sci, 2012, 53: 2256–2265PubMedGoogle Scholar
  105. 105.
    Rozet J M, Gerber S, Ghazi I, et al. Mutations of the retinal specific ATP binding transporter gene (ABCR) in a single family segregating both autosomal recessive retinitis pigmentosa RP19 and Stargardt disease: evidence of clinical heterogeneity at this locus. J Med Genet, 1999, 36: 447–451PubMedPubMedCentralGoogle Scholar
  106. 106.
    Jaakson K, Zernant J, Kulm M, et al. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum Mutat, 2003, 22: 395–403PubMedGoogle Scholar
  107. 107.
    Ernest P J, Boon C J, Klevering B J, et al. Outcome of ABCA4 microarray screening in routine clinical practice. Mol Vis, 2009, 15: 2841–2847PubMedPubMedCentralGoogle Scholar
  108. 108.
    Webster A R, Heon E, Lotery A J, et al. An analysis of allelic variation in the ABCA4 gene. Invest Ophthalmol Vis Sci, 2001, 42: 1179–1189PubMedGoogle Scholar
  109. 109.
    Zaremba C M, Wiszniewski W, Lewis R A, et al. Identification of ABCA4 regulatory mutations in Stargart families. Invest Ophthalmol Vis Sci, 2005, 46: 1794Google Scholar
  110. 110.
    Richards A J, McNinch A, Whittaker J, et al. Splicing analysis of unclassified variants in COL2A1 and COL11A1 identifies deep intronic pathogenic mutations. Eur J Hum Genet, 2012, 20: 552–558PubMedPubMedCentralGoogle Scholar
  111. 111.
    Klambauer G, Schwarzbauer K, Mayr A, et al. cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res, 2012, 40: e69PubMedPubMedCentralGoogle Scholar
  112. 112.
    Nelson M R, Wegmann D, Ehm M G, et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14002 people. Science, 2012, 337: 100–104PubMedPubMedCentralGoogle Scholar
  113. 113.
    Human Genomics Strategy Group. Building on our inheritance: genomic technology in healthcare. United Kindgom Department of Health, 2012Google Scholar
  114. 114.
    Camerlengo T, Ozer H G, Onti-Srinivasan R, et al. From sequencer to supercomputer: an automatic pipeline for managing and processing next generation sequencing data. AMIA Summits Transl Sci Proc, 2012, 1–10Google Scholar
  115. 115.
    Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol, 2012, 251364Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Jacques Zaneveld
    • 1
  • Feng Wang
    • 1
  • Xia Wang
    • 1
  • Rui Chen
    • 1
    Email author
  1. 1.Human Genome Sequencing Center, Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA

Personalised recommendations