Science China Life Sciences

, Volume 55, Issue 11, pp 968–973 | Cite as

Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells

Open Access
Research Paper

Abstract

Mechanical properties play an important role in regulating cellular activities and are critical for unlocking the mysteries of life. Atomic force microscopy (AFM) enables researchers to measure mechanical properties of single living cells under physiological conditions. Here, AFM was used to investigate the topography and mechanical properties of red blood cells (RBCs) and three types of aggressive cancer cells (Burkitt’s lymphoma Raji, cutaneous lymphoma Hut, and chronic myeloid leukemia K562). The surface topography of the RBCs and the three cancer cells was mapped with a conventional AFM probe, while mechanical properties were investigated with a micro-sphere glued onto a tip-less cantilever. The diameters of RBCs are significantly smaller than those of the cancer cells, and mechanical measurements indicated that Young’s modulus of RBCs is smaller than those of the cancer cells. Aggressive cancer cells have a lower Young’s modulus than that of indolent cancer cells, which may improve our understanding of metastasis.

Keywords

atomic force microscopy red blood cell cancer cell mechanical properties Young’s modulus 

References

  1. 1.
    Fletcher D A, Mullins R D. Cell mechanics and the cytoskeleton. Nature, 2010, 463: 485–492PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Butcher D T, Alliston T, Weaver V M. A tense situation: forcing tumor progression. Nat Rev Cancer, 2009, 9: 108–122PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hoffman B D, Grashoff C, Schwartz M A. Dynamic molecular processes mediate cellular mechanotransduction. Nature, 2011, 475: 316–323PubMedCrossRefGoogle Scholar
  4. 4.
    Janmey P A, McCulloch C A. Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng, 2007, 9: 1–34PubMedCrossRefGoogle Scholar
  5. 5.
    Lim C T, Zhou E H, Quek S T. Mechanical models for living cells—a review. J Biomech, 2006, 39: 195–216PubMedCrossRefGoogle Scholar
  6. 6.
    Li Q S, Lee G Y H, Ong C N, et al. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun, 2008, 374: 609–613PubMedCrossRefGoogle Scholar
  7. 7.
    Suresh S. Biomechanics and biophysics of cancer cells. Acta Biomater, 2007, 3: 413–438PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cross S E, Jin Y S, Rao J Y, et al. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol, 2007, 2: 780–783PubMedCrossRefGoogle Scholar
  9. 9.
    Suresh S. Elastic clues in cancer detection. Nat Nanotechnol, 2007, 2: 748–749PubMedCrossRefGoogle Scholar
  10. 10.
    Yu H, Mouw J K, Weaver V M. Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol, 2011, 21: 47–56PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Binning G, Quate C F, Gerber C. Atomic force microscope. Phys Rev Lett, 1986, 56: 930–933CrossRefGoogle Scholar
  12. 12.
    Martens J C, Radmacher M. Softening of the actin cytoskeleton by inhibition of myosin II. Pflugers Arch Eur J Physiol, 2008, 456: 95–100CrossRefGoogle Scholar
  13. 13.
    Li M, Liu L, Xi N, et al. Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochem Biophys Res Commun, 2011, 404: 689–694PubMedCrossRefGoogle Scholar
  14. 14.
    Tao N J, Lindsay S M, Lees S. Measuring the microelastic properties of biological material. Biophys J, 1992, 63: 1165–1169PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Radmacher M, Monika F, Hansma P K. Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J, 1995, 69: 264–270PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hoh J H, Schoenenberger C A. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci, 1994, 107: 1105–1114PubMedGoogle Scholar
  17. 17.
    Radmacher M, Fritz M, Kacher C M, et al. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J, 1996, 79: 556–567CrossRefGoogle Scholar
  18. 18.
    Cuerrier C M, Gagner A, Lebel R, et al. Effect of thrombin and bradykinin on endothelial cell mechanical properties monitored through membrane deformation. J Mol Recognit, 2009, 22: 389–396PubMedCrossRefGoogle Scholar
  19. 19.
    Pelling A E, Veraitch F S, Chu C P K, et al. Mechanical dynamics of single cells during early apoptosis. Cell Motil Cytoskeleton, 2009, 66: 409–422PubMedCrossRefGoogle Scholar
  20. 20.
    Oberleithner H, Callies C, Kusche-Vihrog K, et al. Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci USA, 2009, 106: 2829–2834PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nikkhah M, Strobl J S, Schmelz E M, et al. Evaluation of the influence of growth medium composition on cell elasticity. J Biomech, 2011, 44: 762–766PubMedCrossRefGoogle Scholar
  22. 22.
    Gao Y M, Xu C F. Histology and Embryology (in Chinese). Beijing: People’s Medical Publishing House, 2001. 64–65Google Scholar
  23. 23.
    Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep, 2005, 59: 1–152CrossRefGoogle Scholar
  24. 24.
    Merkel R, Nassoy P, Leung A, et al. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature, 1999, 397: 50–53PubMedCrossRefGoogle Scholar
  25. 25.
    Li M, Liu L Q, Xi N, et al. Imaging and mechanical property measurement of the lymphoma cells by atomic force microscopy (in Chinese). Chin Sci Bull, 2010, 55: 2188–2196CrossRefGoogle Scholar
  26. 26.
    Li M, Liu L, Xi N, et al. Drug-induced changes of topography and elasticity in living B lymphoma cells based on atomic force microscopy. Acta Phys Chim Sin, 2012, 28: 1502–1508Google Scholar
  27. 27.
    Nikkhah M, Strobl J S, Vita R D, et al. The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures. Biomaterials, 2010, 31: 4552–4561PubMedCrossRefGoogle Scholar
  28. 28.
    Leporatti S, Gerth A, Kohler G, et al. Elasticity and adhesion of resting and lipoplysaccharide-stimulated macrophages. FEBS Lett, 2006, 580: 450–454PubMedCrossRefGoogle Scholar
  29. 29.
    Dave S S, Fu K, Wright G W, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med, 2006, 354: 2431–2442PubMedCrossRefGoogle Scholar
  30. 30.
    Diamandidou E, Cohen P R, Kurzrock R. Mycosis fungoides and sezary syndrome. Blood, 1996, 88: 2385–2409PubMedGoogle Scholar
  31. 31.
    Deininger M W N, Goldman J M, Melo J V. The molecular biology of chronic myeloid leukemia. Blood, 2000, 96: 3343–3356PubMedGoogle Scholar
  32. 32.
    Lee G Y H, Lim C T. Biomechanics approaches to studying human diseases. Trends Biotechnol, 2007, 25: 111–118PubMedCrossRefGoogle Scholar
  33. 33.
    Jin H, Pi J, Huang X, et al. BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation. Appl Microbiol Biotechnol, 2012, 93: 1715–1723PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Robotics, Shenyang Institute of AutomationChinese Academy of SciencesShenyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Mechanical and Biomedical EngineeringCity University of Hong KongHong KongChina
  4. 4.Department of LymphomaAffiliated Hospital of Military Medical Academy of SciencesBeijingChina
  5. 5.State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina

Personalised recommendations