Science China Life Sciences

, Volume 55, Issue 7, pp 591–598

Complete mitochondrial genome of the Japanese snapping shrimp Alpheus japonicus (Crustacea: Decapoda: Caridea): Gene rearrangement and phylogeny within Caridea

  • Xin Shen
  • Xiao Li
  • ZhongLi Sha
  • BinLun Yan
  • QiHua Xu
Open Access
Research Paper


The complete sequence of the mitochondrial genome of the Japanese snapping shrimp Alpheus japonicus Miers (Crustacea: Decapoda: Caridea) is presented here. A comparative analysis based on the currently available mitochondrial genomic data revealed many previously unknown characteristics of the mitochondrial genomes of caridean shrimps. The A. japonicus mitochondrial genome is 16487 bp long and contains the typical set of 37 metazoan genes. The gene arrangements in the mitochondrial genomes of four previously studied carideans (Macrobrachium rosenbergii, M. nipponense, M. lanchesteri and Halocaridina rubra) were found to be identical to the pancrustacean ground pattern; thus, it was considered that gene rearrangements probably did not occur in the suborder Caridea. In the present study, a translocation of the trnE gene involving inversion was found in Alpheus mitochondrial genomes. This phenomenon has not been reported in any other crustacean mitochondrial genome that has been studied so far; however, the translocation of one transfer RNA gene (trnP or trnT) was reported in the mitochondrial genome of Exopalaemon carinicauda. When the ratios of the nonsynonymous and synonymous substitutions rates (Ka/Ks) for the 13 protein coding genes from two Alpheus species (A. japonicus and A. distinguendus) and three Macrobrachium species (M. rosenbergii, M. nipponense, M. lanchesteri) were calculated, the Ka/Ks values for all the protein coding genes in Alpheus and Macrobrachium mitochondrial genomes were found to be less than 1 (between 0.0048 and 0.2057), indicating that a strong purification selection had occurred. The phylogenetic tree that was constructed based on the mitochondrial protein coding genes in the genomes of nine related species indicated that Palaemonidae and Alpheidae formed a monophyly and shared a statistically significant relationship, (Palaemonidae+Alpheidae)+Atyidae, at the family level.


Decapoda Caridea mitochondrial genome gene order phylogeny 


  1. 1.
    Boore J L. Animal mitochondrial genomes. Nucleic Acids Res, 1999, 27: 1767–1780PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Shen X, Ma X Y, Ren J F, et al. A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascolosoma esculenta. BMC Genomics, 2009, 10: 136PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Williams S T, Knowlton N, Weigt L A, et al. Evidence for three major clades within the snapping shrimp genus Alpheus inferred from nuclear and mitochondrial gene sequence data. Mol Phylogenet Evol, 2001, 20: 375–389PubMedCrossRefGoogle Scholar
  4. 4.
    Qian G, Zhao Q, Wang A, et al. Two new decapod (Crustacea, Malacostraca) complete mitochondrial genomes: bearings on the phylogenetic relationships within the Decapoda. Zool J Linn Soc, 2011, 162: 471–481CrossRefGoogle Scholar
  5. 5.
    Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Marine Biol Biotechnol, 1994, 3: 294–299PubMedGoogle Scholar
  6. 6.
    Machida R J, Miya M U, Nishida M, et al. Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea: Copepoda). Mar Biotechnol (NY), 2002, 4: 406–417CrossRefGoogle Scholar
  7. 7.
    Yamauchi M, Miya M, Nishida M. Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panulirus japonicus (Crustacea: Decapoda). Gene, 2002, 295: 89–96PubMedCrossRefGoogle Scholar
  8. 8.
    Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res, 1998, 8: 186–194PubMedCrossRefGoogle Scholar
  9. 9.
    Ewing B, Hillier L, Wendl M C, et al. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res, 1998, 8: 175–185PubMedCrossRefGoogle Scholar
  10. 10.
    Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res, 1998, 8: 195–202PubMedCrossRefGoogle Scholar
  11. 11.
    Wyman S K, Jansen R K, Boore J L. Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 2004, 20: 3252–3255PubMedCrossRefGoogle Scholar
  12. 12.
    Schattner P, Brooks A N, Lowe T M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res, 2005, 33: W686–689PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25: 1451–1452PubMedCrossRefGoogle Scholar
  14. 14.
    Shen X, Sun M A, Wu Z G, et al. The complete mitochondrial genome of the ridgetail white prawn Exopalaemon carinicauda Holthuis, 1950 (Crustacean: Decapoda: Palaemonidae) revealed a novel rearrangement of tRNA genes. Gene, 2009, 437: 1–8PubMedCrossRefGoogle Scholar
  15. 15.
    Ivey J L, Santos S R. The complete mitochondrial genome of the Hawaiian anchialine shrimp Halocaridina rubra Holthuis, 1963 (Crustacea: Decapoda: Atyidae). Gene, 2007, 394: 35–44PubMedCrossRefGoogle Scholar
  16. 16.
    Miller A D, Murphy N P, Burridge C P, et al. Complete mitochondrial DNA sequences of the decapod crustaceans Pseudocarcinus gigas (Menippidae) and Macrobrachium rosenbergii (Palaemonidae). Mar Biotechnol, 2005, 7: 339–349PubMedCrossRefGoogle Scholar
  17. 17.
    Shen X, Ren J F, Cui Z X, et al. The complete mitochondrial genomes of two common shrimps (Litopenaeus vannamei and Fenneropenaeus chinensis) and their phylogenomic considerations. Gene, 2007, 403: 98–109PubMedCrossRefGoogle Scholar
  18. 18.
    Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876–4882PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Posada D. ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res, 2006, 34: W700–703PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Guindon S, Dufayard J F, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol, 2010, 59: 307–321PubMedCrossRefGoogle Scholar
  21. 21.
    Ronquist F, Huelsenbeck J P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, 19: 1572–1574PubMedCrossRefGoogle Scholar
  22. 22.
    von Reumont B M, Jenner R A, Wills M A, et al. Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol, 2012, 29: 1031–1045CrossRefGoogle Scholar
  23. 23.
    Boore J L. The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals. In: Sankoff D, Nadeau J H, eds. Comparative Genomics. Boston: Kluwer Academic, 2000. 133–216CrossRefGoogle Scholar
  24. 24.
    Dowton M, Campbell N J. Intramitochondrial recombination-is it why some mitochondrial genes sleep around? Trends Ecol Evol, 2001, 16: 269–271PubMedCrossRefGoogle Scholar
  25. 25.
    Perna N T, Kocher T D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol, 1995, 41: 353–358PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Xin Shen
    • 1
    • 2
  • Xiao Li
    • 3
  • ZhongLi Sha
    • 2
  • BinLun Yan
    • 1
  • QiHua Xu
    • 1
  1. 1.Jiangsu Key Laboratory of Marine BiotechnologyHuaihai Institute of TechnologyLianyungangChina
  2. 2.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  3. 3.Shandong Peanut Research InstituteQingdaoChina

Personalised recommendations