Science China Life Sciences

, Volume 55, Issue 6, pp 474–482 | Cite as

Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: A review

  • HaiRu Jin
  • Jie Liu
  • Jing Liu
  • XiaoWei Huang
Open Access


Arbuscular mycorrhizal (AM) fungi are obligate symbionts that colonize the roots of more than 80% of land plants. Experiments on the relationship between the host plant and AM in soil or in sterile root-organ culture have provided clear evidence that the extraradical mycelia of AM fungi uptake various forms of nitrogen (N) and transport the assimilated N to the roots of the host plant. However, the uptake mechanisms of various forms of N and its translocation and transfer from the fungus to the host are virtually unknown. Therefore, there is a dearth of integrated models describing the movement of N through the AM fungal hyphae. Recent studies examined Ri T-DNA-transformed carrot roots colonized with AM fungi in 15N tracer experiments. In these experiments, the activities of key enzymes were determined, and expressions of genes related to N assimilation and translocation pathways were quantified. This review summarizes and discusses the results of recent research on the forms of N uptake, transport, degradation, and transfer to the roots of the host plant and the underlying mechanisms, as well as research on the forms of N and carbon used by germinating spores and their effects on amino acid metabolism. Finally, a pathway model summarizing the entire mechanism of N metabolism in AM fungi is outlined.


arbuscular mycorrhizae arginine nitrogen metabolism nitrogen translocation symbiosis 


  1. 1.
    Smith S E, Read D J, eds. Mycorrhizal Symbiosis. London, UK: Academic Press, 2008Google Scholar
  2. 2.
    Abdel Latef A A H. Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza, 2011, 21: 495–503PubMedCrossRefGoogle Scholar
  3. 3.
    Piao H C, Liu C Q. Variations in nitrogen, zinc, and sugar concentrations in Chinese fir seedlings grown on shrubland and plowed soils in response to arbuscular mycorrhizae-mediated process. Biol Fertil Soils, 2011, 47: 721–727CrossRefGoogle Scholar
  4. 4.
    Cheng X M, Baumgartner K. Arbuscular mycorrhizal fungi-mediated nitrogen transfer from vineyard cover crops to grapevines. Biol Fert Soils, 2004, 40: 406–412CrossRefGoogle Scholar
  5. 5.
    Meding S M, Zasoski R J. Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biol Biochem, 2008, 40: 126–134CrossRefGoogle Scholar
  6. 6.
    McFarland J W, Ruess R W, Kielland K, et al. Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4+. Ecosystems, 2010, 13:177–193CrossRefGoogle Scholar
  7. 7.
    Tobar R, Azcón R, Barea J M. Improved nitrogen uptake and transport from 15N labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol, 1994, 126: 119–122CrossRefGoogle Scholar
  8. 8.
    Bago B, Vierheilig H, Piché Y, Azcón-Aguilar C. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol, 1996, 133: 273–280CrossRefGoogle Scholar
  9. 9.
    Johansen A, Finlay R D, Olsson P A. Nitrogen metabolism of the external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol, 1996, 133: 705–712CrossRefGoogle Scholar
  10. 10.
    Hawkins H J, Johansen A, George E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil, 2000, 226: 275–285CrossRefGoogle Scholar
  11. 11.
    Toussaint J P, St-Arnaud M, Charest C. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol, 2004, 50: 251–260PubMedCrossRefGoogle Scholar
  12. 12.
    Breuninger M, Trujillo C G, Serrano E, et al. Different nitrogen sources modulate activity but not expression of glutamine synthetase in arbuscular mycorrhizal fungi. Fungal Genet Biol, 2004, 41: 542–552PubMedCrossRefGoogle Scholar
  13. 13.
    Azcón R, Ruiz-Lozano J M, Rodriguez R. Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake of 15N under increasing N supply to the soil. Can J Bot, 2001, 79: 1175–1180CrossRefGoogle Scholar
  14. 14.
    Shachar-Hill Y, Rolin D B, Pfeffer P E, et al. Uptake and transfer of N to the host by an arbuscular mycorrhizal (AM) fungus. Plant Physiol, 1997, 114(Suppl): 39, Abstr. 106Google Scholar
  15. 15.
    Vazquez M M, Barea J M, Azcon R. Impact of soil nitrogen concentration on Glomus spp.-Sinorhizobium interactions as affecting growth, nitrate reductase activity and protein content of Medicago sativa. Biol Fert Soils, 2001, 34: 57–63CrossRefGoogle Scholar
  16. 16.
    Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001, 413: 297–299PubMedCrossRefGoogle Scholar
  17. 17.
    Rolin D, Pfeffer P E, Douds D D, et al. Arbuscular mycorrhizal symbiosis and phosphorus nutrition: Effects on amino acid production and turnover in leek. Symbiosis, 2001, 30: 1–14Google Scholar
  18. 18.
    Rasmussen N, Lloyd D C, Ratcliffe R G, et al.31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi. Plant Soil, 2000, 226: 245–253CrossRefGoogle Scholar
  19. 19.
    Bago B, Pfeffer P E, Shachar-Hill Y. Carbon transport and metabolism in arbuscular mycorrhiza. Plant Physiol, 2000, 124: 949–957PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Landis F C, Fraser L H. A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytol, 2007, 177: 466–479PubMedGoogle Scholar
  21. 21.
    Smith S E, Gianinazzi-Pearson V, Koide R, et al. Nutrient transport in mycorrhizas: structure, physiology, and consequences for efficiency of the symbiosis. Plant Soil, 1994, 159: 103–113CrossRefGoogle Scholar
  22. 22.
    Kaldorf M M, Schmelzer E, Bothe H. Expression of maize and fungal nitrate reductase in arbuscular mycorrhiza Mo. Plant-Microbe Interact, 1998, 11: 439–448CrossRefGoogle Scholar
  23. 23.
    Bago B, Shachar-Hill Y, Pfeffer P E. Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol, 2001, 149: 4–8CrossRefGoogle Scholar
  24. 24.
    Govindarajulul M, Pfeffer P E, Jin H R, et al. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 2005, 435: 819–823CrossRefGoogle Scholar
  25. 25.
    Jin H R, Pfeffer P E, Douds D D, et al. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol, 2005, 168: 301–310CrossRefGoogle Scholar
  26. 26.
    Jin H R. Arginine bi-directional translocation and breakdown into ornithine along the arbuscular mycorrhizal mycelium. Sci China Ser C-Life Sci, 2009, 52: 381–389CrossRefGoogle Scholar
  27. 27.
    Cruz C, Egsgaard H, Trujillo C, et al. Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiol, 2007, 144: 782–792PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tian C J, Kasiborski B, Koul R, et al. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: Gene characterization and the coordination of expression with nitrogen flux. Plant Physiol, 2010, 153: 1175–1187PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Jin H R, Zhang P H, Jiang D H. Study on mechanism of arbuscular mycorrhizal fungi absorbing and transporting nitrogen from different sources to the host plant with isotopic tracing. Acta Pedol Sin, 2011, 48: 888–892Google Scholar
  30. 30.
    Fellbaum C R, Gachomo E W, Beesetty Y, et al. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA, 2012, 109: 2666–2671PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kiers E T, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333: 880–882PubMedCrossRefGoogle Scholar
  32. 32.
    Olsson P A, Burleigh S H, Van Aarle I M. The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. New Phytol, 2005, 168: 677–686PubMedCrossRefGoogle Scholar
  33. 33.
    Coruzzi G M, Zhou L. Carbon and nitrogen sensing and signaling in plants: emerging matrix effects. Curr Opin Plant Biol, 2001, 4: 247–253PubMedCrossRefGoogle Scholar
  34. 34.
    Leigh J, Hodge A, Fitter A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol, 2009, 181: 199–207PubMedCrossRefGoogle Scholar
  35. 35.
    Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA, 2010, 107: 13754–13759PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Nayyar A A, Hamel C, Hanson K, et al. The arbuscular mycorrhizal symbiosis lins N mineralization to plant demand. Mycorrhiza, 2009, 19: 239–246CrossRefGoogle Scholar
  37. 37.
    Botton B, Chalot M. Nitrogen assimilation: enzymology in ectomycrrhizas. In: Varma A, Hock B, eds. Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology, 2nd Ed. Berlin: Springer-Verlag, 1999. 333–372CrossRefGoogle Scholar
  38. 38.
    López-Pedrosa A, González-Guerrero M, Valderas A, et al. GintAMTi encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol, 2006, 43: 102–110PubMedCrossRefGoogle Scholar
  39. 39.
    Pérez-Tienda J, Testillano P S, Balestrini R. GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fung Genet Biol, 2011, 48: 1044–1055CrossRefGoogle Scholar
  40. 40.
    Subramanian K S, Charest C. Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza, 1999, 9: 69–75CrossRefGoogle Scholar
  41. 41.
    Kaldorf M M, Schmelzer E, Bothe H. Expression of maize and fungal nitrate reductase in arbuscular mycorrhiza Mo. Plant-Microbe Interact, 1998, 11, 439–448CrossRefGoogle Scholar
  42. 42.
    Tisserant E, Kohler A, Dozolme-Seddas P. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 1971–98) reveals functional tradeoffs in an obligate symbiont. New Phytol, 2012, 193: 755–769PubMedCrossRefGoogle Scholar
  43. 43.
    Abuarghub S M, Read D J. The biology of mycorrhiza in Ericaceae. XII. Quantitative analysis of individual free amino acids in relation to time and depth in the soil profile. New Phytol, 1989, 108: 433–441CrossRefGoogle Scholar
  44. 44.
    Cappellazzo G, Lanfranco L, Fitz Michael, et al. Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol, 2008, 147: 429–437PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Leake J R, Read D J. The biology of mycorrhiza in Ericaceae. XIII. Some characteristics of extracellular proteinase of the ericoid endophyte Hymenoscyphus ericae. New Phytol, 1989, 112: 69–76CrossRefGoogle Scholar
  46. 46.
    Cliquet J B, Murray P J, Boucaud J. Effect of the arbuscular mycorrhizal fungus Glomus fasciculatum on the uptake of amino nitrogen by Lolium perenne. New Phytol, 1997, 137: 345–349CrossRefGoogle Scholar
  47. 47.
    Müller T, Avolio M, Olivi M, et al. Nitrogen transport in the ectomycorrhiza association: the Hebeloma cylindrosporum-Pinus pinaster model. Phytochem, 2007, 68: 41–51CrossRefGoogle Scholar
  48. 48.
    Vallorani L, Polidori E, Sacconi C, et al. Biochemical and molecular characterization of NADP glutamate dehydrogenase from the ectomycorrhizal fungus Tuber borchii. New Phytol, 2002, 154: 779–790CrossRefGoogle Scholar
  49. 49.
    Desh Pal S. Verma, Zhang C. Regulation of proline and arginine biosynthesis in plants. In: Singh B, ed. Plant Amino Acids Biochemistry and Biotechnology. New York: Marcel Dekker, 1999. 249–265Google Scholar
  50. 50.
    Smith S E, Smith F A. Roles of Arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol, 2011, 62: 227–250PubMedCrossRefGoogle Scholar
  51. 51.
    Bago B, Zipfel W, Williams R M, et al. Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol, 2002, 128: 108–124PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Borsuk P, Dzikowska A, Empel J, et al. Structure of the arginase coding gene and its transcript in Aspergillus nidulans. Acta Biochim Pol, 1999, 46: 391–403PubMedGoogle Scholar
  53. 53.
    Dzikowska A, Kacprzak M, Tomecki R, et al. Specific induction and carbon/nitrogen repression of arginine catabolism gene of Aspergillus nidulans functional in vivo analysis of the otaA promoter. Fung Genet Biol, 2003, 38: 175–186CrossRefGoogle Scholar
  54. 54.
    Wagemaker M J M, Eastwood D C, Van Der Drift C, et al. Argininosuccinate synthetase and argininosuccinate lyase: two ornithine cycle enzymes from Agaricus bisporus. Mycol Res, 2007, 111: 493–502PubMedCrossRefGoogle Scholar
  55. 55.
    Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied plant. Cell Environ, 2005, 28: 1247–1254CrossRefGoogle Scholar
  56. 56.
    Chalot M, Blaudez D, Brun A. Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci, 2006, 11: 263–266PubMedCrossRefGoogle Scholar
  57. 57.
    Guether M, Neuhäuser B, Balestrini R, et al. A mycorrhizal-specific ammonium transporter from lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol, 2009, 150: 73–83PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kobae Y, Tamura Y, Takai S, et al. Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol, 2010, 51: 1411–1415PubMedCrossRefGoogle Scholar
  59. 59.
    Ruzicka D R, Hausmann N T, Barrios-Masias F H, et al. Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions. Plant Soil, 2011, 23: 1–18Google Scholar
  60. 60.
    Bago B, Pfeffer P E, Douds D D, et al. Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol, 1999, 121: 263–271PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Gachomo E, Allen J W, Pfeffer P E, et al. Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol, 2009, 184: 399–411PubMedCrossRefGoogle Scholar
  62. 62.
    Jin H R, Jiang D H, Zhang P H. Effect of carbon and nitrogen availability on the metabolism of amino acids in the germinating spores of arbuscular mycorrhizal fungi. Pedosphere. 2011, 21: 432–442CrossRefGoogle Scholar
  63. 63.
    Lammers P J, Jun J, Abubaker J, et al. The glyoxylate cycle in an arbuscular mycorrhizal fungus. Carbon flux and gene expression. Plant Physiol, 2001, 127: 1287–1298PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Yao Q, Ohtomo R, Saito M. Influence of nitrogen and phosphorus on polyphosphate accumulation in Gigaspora margarita during spore germination. Plant Soil, 2010, 330: 303–311CrossRefGoogle Scholar
  65. 65.
    Fortin J A, Bécard G, Declerck S, et al. Arbuscular mycorrhiza on root-organ cultures. Can J Bot, 2002, 80: 1–20CrossRefGoogle Scholar
  66. 66.
    Azcón R, RodrÍguez R, Amora-Lazcano E, et al. Uptake and metabolism of nitrate in mycorrhizal plants as affected by water availability and N concentration in soil. Eur J Soil Sci, 2008, 59: 131–138CrossRefGoogle Scholar
  67. 67.
    Subramanian K S, Charest C. Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza, 1999, 9: 69–75CrossRefGoogle Scholar
  68. 68.
    Veresoglou S D, Chen B, Rillig M C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem, 2012, 46: 53–62CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.College of Chemistry and Life ScienceZhejiang Normal UniversityJinhuaChina

Personalised recommendations