Science China Life Sciences

, Volume 54, Issue 9, pp 828–834 | Cite as

Study on gastric cancer blood plasma based on surface-enhanced Raman spectroscopy combined with multivariate analysis

  • ShangYuan Feng
  • JianJi Pan
  • YanAn Wu
  • Duo Lin
  • YanPing Chen
  • GangQin Xi
  • JuQiang Lin
  • Rong Chen
Open Access
Research Papers


A surface-enhanced Raman spectroscopy (SERS) method combined with multivariate analysis was developed for non-invasive gastric cancer detection. SERS measurements were performed on two groups of blood plasma samples: one group from 32 gastric patients and the other group from 33 healthy volunteers. Tentative assignments of the Raman bands in the measured SERS spectra suggest interesting cancer-specific biomolecular changes, including an increase in the relative amounts of nucleic acid, collagen, phospholipids and phenylalanine and a decrease in the percentage of amino acids and saccharide in the blood plasma of gastric cancer patients as compared with those of healthy subjects. Principal components analysis (PCA) and linear discriminant analysis (LDA) were employed to develop effective diagnostic algorithms for classification of SERS spectra between normal and cancer plasma with high sensitivity (79.5%) and specificity (91%). A receiver operating characteristic (ROC) curve was employed to assess the accuracy of diagnostic algorithms based on PCA-LDA. The results from this exploratory study demonstrate that SERS plasma analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of gastric cancers.


surface-enhanced Raman spectroscopy (SERS) blood plasma gastric cancer detection 


  1. 1.
    Gremlich H U, Yan B. Infrared and Raman Spectroscopy of Biological Materials. New York: Marcel Dekker, 2000. 195–245Google Scholar
  2. 2.
    Huang Z, Mcwilliams A, Lui H, et al. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer, 2003, 107: 1047–1052 14601068, 10.1002/ijc.11500, 1:CAS:528:DC%2BD3sXptFOgur4%3DPubMedCrossRefGoogle Scholar
  3. 3.
    Manoharan R, Shafer K, Perelman L, et al. Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging. Photochem Photobiol, 1998, 67: 15–22 9477761, 10.1111/j.1751-1097.1998.tb05160.x, 1:CAS:528:DyaK1cXmvVWksA%3D%3DPubMedCrossRefGoogle Scholar
  4. 4.
    Shim M G, Wong L K S, Marcon N E, et al. In vivo near infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. Photochem Photobiol, 2000, 72: 146–150 10911740, 1:CAS:528:DC%2BD3cXltVGmtL0%3DPubMedGoogle Scholar
  5. 5.
    Mahadevan-Jansen A, Mitchell M F, Ramanujam N, et al. Near infrared Raman spectroscopy for in vitro detection of cervical precancers. Photochem Photobiol, 1998, 68: 123–132 9679458, 10.1111/j.1751-1097.1998.tb03262.x, 1:CAS:528:DyaK1cXkslOkurc%3DPubMedCrossRefGoogle Scholar
  6. 6.
    Stone N, Stavroulaki P, Kendall C, et al. Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Laryngoscope, 2000, 110: 1756–1763 11037840, 10.1097/00005537-200010000-00037, 1:STN:280:DC%2BD3cvoslGrsA%3D%3DPubMedCrossRefGoogle Scholar
  7. 7.
    Lau D, Huang Z, Lui H, et al. Raman spectroscopy for optical diagnosis in normal and cancerous tissue of the nasopharynx—preliminary findings. Laser Surg Med, 2003, 32: 210–214 10.1002/lsm.10084CrossRefGoogle Scholar
  8. 8.
    Feng S, Lin J, Cheng M, et al. Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation. Appl Spectrosc, 2009, 63: 1089–1094 19843357, 10.1366/000370209789553291, 1:CAS:528:DC%2BD1MXht12qtLjNPubMedCrossRefGoogle Scholar
  9. 9.
    Tao J, Huang Y, Lin R, et al. A study on laser-Raman spectrometry for detecting signals of gastric cancerization (in Chinese). ACTA Laser Biol Sin, 2007, 16: 238–240Google Scholar
  10. 10.
    Leng A, Wang H, Yang J, et al. Application of laser resonance Raman spectroscopy in gastric cancer (in Chinese). China J Modern Med, 2009, 19: 2015–2019 1:CAS:528:DC%2BD1MXhs1ait73NGoogle Scholar
  11. 11.
    Tao J, Huang Y, Lin R, et al. Differentiating gastric cancer cell from normal cell by laser Raman spectrum (in Chinese). Spectrosc Spect Anal, 2007, 27: 2262–2265Google Scholar
  12. 12.
    Tao Z, Yao H, Wang G, et al. Using Raman spectroscopy to analyze apoptosis of gastric cancer cells induced by cisplatin (in Chinese). Spectrosc Spect Anal, 2009, 29: 2442–2445 1:CAS:528:DC%2BD1MXhtFaqur7FGoogle Scholar
  13. 13.
    Zhang J, Shen A, Wei Y, et al. Study of normal mucosa and gastric carcinoma by confocal Raman microspectroscopy (in Chinese). J Biomed Engineer, 2004, 21: 910–912 1:CAS:528:DC%2BD2MXjtVKmtLg%3DGoogle Scholar
  14. 14.
    Ling X, Li W, Song Y, et al. FT-Raman spectroscopic investigation on stomach cancer (in Chinese). Spectrosc Spect Anal, 2000, 20: 692–693 1:CAS:528:DC%2BD3cXnslSit7g%3DGoogle Scholar
  15. 15.
    Tang W, Wang J, Xu P. Research of stomach cancer tissue by Raman spectroscopy (in Chinese). Laser J, 2004, 25: 82–83Google Scholar
  16. 16.
    Ellis D I, Goodacre R. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst, 2006, 131: 875–885 17028718, 10.1039/b602376m, 1:CAS:528:DC%2BD28Xnt1ags7g%3DPubMedCrossRefGoogle Scholar
  17. 17.
    Fleischman M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett, 1974, 26: 163 10.1016/0009-2614(74)85388-1CrossRefGoogle Scholar
  18. 18.
    Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced Raman scattering: a new tool for biochemistry spectroscopy. Curr Sci, 1999, 77: 915 1:CAS:528:DyaK1MXnt1CktL4%3DGoogle Scholar
  19. 19.
    Zhang X, Young M A, Lyandres O, et al. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc, 2005, 127: 4484 15783231, 10.1021/ja043623b, 1:CAS:528:DC%2BD2MXitVWrtrg%3DPubMedCrossRefGoogle Scholar
  20. 20.
    Zhang X, Zhao J, Whitney A V, et al. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J Am Chem Soc, 2006, 128: 10304–10309 16881662, 10.1021/ja0638760, 1:CAS:528:DC%2BD28XmvFCqu7c%3DPubMedCrossRefGoogle Scholar
  21. 21.
    Bell S E J, Mackle J N, Sirimuthu N M S. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid-towards rapid anthrax endospore detection. Analyst, 2005, 130: 545–549 15776166, 10.1039/b415290e, 1:CAS:528:DC%2BD2MXitlOlt70%3DPubMedCrossRefGoogle Scholar
  22. 22.
    Taton T A, Mirkin C A. Scanometric DNA array detection with nanoparticle probes. Science, 2000, 289: 1757–1760 10976070, 10.1126/science.289.5485.1757, 1:CAS:528:DC%2BD3cXmsV2nsLo%3DPubMedCrossRefGoogle Scholar
  23. 23.
    Cao Y W C, Jin R C, Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, 297: 1536–1540 12202825, 10.1126/science.297.5586.1536, 1:CAS:528:DC%2BD38XmslSjt7c%3DPubMedCrossRefGoogle Scholar
  24. 24.
    Ji X, Xu S, Wang L, et al. Immunoassay using the probe-labeled Au/Ag core-shell nanoparticles based on surface-enhanced Raman scattering. Colloid Surface A, 2005, 257-258: 171–175 10.1016/j.colsurfa.2004.10.096, 1:CAS:528:DC%2BD2MXisVCku7Y%3DCrossRefGoogle Scholar
  25. 25.
    Qian X, Peng X, Ansari D O, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol, 2007, 26: 83–90 18157119, 10.1038/nbt1377PubMedCrossRefGoogle Scholar
  26. 26.
    Ni J, Lipert R J, Dawson G B, et al. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal Chem, 1999, 71: 4903–4908 10565281, 10.1021/ac990616a, 1:CAS:528:DyaK1MXmtVOgtLw%3DPubMedCrossRefGoogle Scholar
  27. 27.
    Grubisha D S, Lipert R J, Park H Y, et al. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem, 2003, 75: 5936–5943 14588035, 10.1021/ac034356f, 1:CAS:528:DC%2BD3sXnsVOju7Y%3DPubMedCrossRefGoogle Scholar
  28. 28.
    Driskell J D, Kwarta K M, Lipert R J, et al. Low-lever detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Anal Chem, 2005, 77: 6147–6154 16194072, 10.1021/ac0504159, 1:CAS:528:DC%2BD2MXptVCnuro%3DPubMedCrossRefGoogle Scholar
  29. 29.
    Driskell J D, Uhlenkamp J M, Lipert R J, et al. Surface-enhanced Raman scattering immunoassays using a rotated capture substrate. Anal Chem, 2007, 79: 4141–4148 17487976, 10.1021/ac0701031, 1:CAS:528:DC%2BD2sXkvFKmt7o%3DPubMedCrossRefGoogle Scholar
  30. 30.
    Feng S, Chen R, Lin J, et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron, 2010, 25: 2414–2419 20427174, 10.1016/j.bios.2010.03.033, 1:CAS:528:DC%2BC3cXmslOjs7o%3DPubMedCrossRefGoogle Scholar
  31. 31.
    Leopold N, Lendl B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B, 2003, 107: 5723–5727 10.1021/jp027460u, 1:CAS:528:DC%2BD3sXjvFSntr0%3DCrossRefGoogle Scholar
  32. 32.
    Zhao J, Lui H, Mclean D I, et al. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl Spectrosc, 2007, 61: 1225–1232 18028702, 10.1366/000370207782597003, 1:CAS:528:DC%2BD2sXht12jsLnNPubMedCrossRefGoogle Scholar
  33. 33.
    Han H, Yan X, Dong R, et al. Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS). Appl Phys B, 2009, 94: 667–672 10.1007/s00340-008-3299-5, 1:CAS:528:DC%2BD1MXivVWitL4%3DCrossRefGoogle Scholar
  34. 34.
    Uzunbajakava N, Lenferink A, Kraan Y, et al. Nonresonant Raman imaging of protein distribution in single human cells. Biopolymers, 2003, 72: 1–9 12400086, 10.1002/bip.10246, 1:CAS:528:DC%2BD3sXnvV2ksQ%3D%3DPubMedCrossRefGoogle Scholar
  35. 35.
    Liu C H, Das B B, Glassman W L, et al. Raman, fluorescence, and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media. Photochem Photobiol, 1992, 16: 187–209 10.1016/1011-1344(92)80008-J, 1:STN:280:DyaK3s7hsFyntA%3D%3DCrossRefGoogle Scholar
  36. 36.
    Andrade P O, Bitar R A, Yassoyama K, et al. Study of normal colorectal tissue by FT-Raman spectroscopy. Anal Bioanal Chem, 2007, 387: 1643–1648 17031621, 10.1007/s00216-006-0819-1, 1:CAS:528:DC%2BD2sXhvFShsr4%3DPubMedCrossRefGoogle Scholar
  37. 37.
    Stone N, Stavroulaki P, Kendall C, et al. Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Laryngoscope, 2000, 110: 1756–1763 11037840, 10.1097/00005537-200010000-00037, 1:STN:280:DC%2BD3cvoslGrsA%3D%3DPubMedCrossRefGoogle Scholar
  38. 38.
    Gelder J D, Gussem K D, Vandenabeele P, et al. Reference database of Raman spectra of biological molecules. J Raman Spectrosc, 2007, 38: 1133–1147 10.1002/jrs.1734CrossRefGoogle Scholar
  39. 39.
    Lyng F M, Faoláin E Ó, Conroy J, et al. Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool. Exp Mol Pathol, 2007, 82: 121–129 17320864, 10.1016/j.yexmp.2007.01.001, 1:CAS:528:DC%2BD2sXjslSkt7s%3DPubMedCrossRefGoogle Scholar
  40. 40.
    Banki F, Yacoub W N, Hagen J A, et al. Plasma DNA is more reliable than carcinoembryonic antigen for diagnosis of recurrent esophageal cancer. J Am coll Surgeons, 2008, 37: 30–35 10.1016/j.jamcollsurg.2008.01.004CrossRefGoogle Scholar
  41. 41.
    Gormally E, Caboux E, Vineis P, et al. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res-Rev Mutat, 2007, 635: 105–117 1:CAS:528:DC%2BD2sXls1Sjs7o%3DCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • ShangYuan Feng
    • 1
  • JianJi Pan
    • 2
  • YanAn Wu
    • 3
  • Duo Lin
    • 1
  • YanPing Chen
    • 2
  • GangQin Xi
    • 1
  • JuQiang Lin
    • 1
  • Rong Chen
    • 1
  1. 1.Key Laboratory of OptoElectronic Science and Technology for MedicineMinistry of Education of China, Fujian Normal UniversityFuzhouChina
  2. 2.Fujian Provincial Tumor HospitalFuzhouChina
  3. 3.Fujian Provincial HospitalFuzhouChina

Personalised recommendations