Science China Life Sciences

, Volume 54, Issue 8, pp 752–762

Early calcium dysregulation in Alzheimer’s disease: setting the stage for synaptic dysfunction

Open Access
Reviews

Abstract

Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder with no known cure or clear understanding of the mechanisms involved in the disease process. Amyloid plaques, neurofibrillary tangles and neuronal loss, though characteristic of AD, are late stage markers whose impact on the most devastating aspect of AD, namely memory loss and cognitive deficits, are still unclear. Recent studies demonstrate that structural and functional breakdown of synapses may be the underlying factor in AD-linked cognitive decline. One common element that presents with several features of AD is disrupted neuronal calcium signaling. Increased intracellular calcium levels are functionally linked to presenilin mutations, ApoE4 expression, amyloid plaques, tau tangles and synaptic dysfunction. In this review, we discuss the role of AD-linked calcium signaling alterations in neurons and how this may be linked to synaptic dysfunctions at both early and late stages of the disease.

Keywords

calcium Alzheimer’s neuron synaptic dysfunction plasticity ER ryanodine CICR 

References

  1. 1.
    Rossor M N, Fox N C, Freeborough P A, et al. Clinical features of sporadic and familial Alzheimer’s disease. Neurodegeneration, 1996, 5: 393–397 9117552, 1:STN:280:DyaK2s7nvFGksA%3D%3D, 10.1006/neur.1996.0052PubMedGoogle Scholar
  2. 2.
    LaFerla F M. Calcium dyshomeostasis and intracellular signaling in Alzheimer’s disease. Nat Rev Neurosci, 2002, 3: 862–872 12415294, 1:CAS:528:DC%2BD38Xotleqtr8%3D, 10.1038/nrn960PubMedGoogle Scholar
  3. 3.
    Selkoe D J. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev, 2001, 81: 741–766 11274343, 1:CAS:528:DC%2BD3MXislCrsLc%3DPubMedGoogle Scholar
  4. 4.
    De Strooper B, Saftig P, Craessaerts K, et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature, 1998, 391: 387–390 9450754, 10.1038/34910, 1:CAS:528:DyaK1cXot1GrtQ%3D%3DPubMedGoogle Scholar
  5. 5.
    Arriagada P V, Marzloff K, Hyman B T, Distribution of Alzheimer’s-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology, 1992, 42: 1681–1688 1307688, 1:STN:280:DyaK38zot1Omuw%3D%3DPubMedGoogle Scholar
  6. 6.
    Kazee A M, Johnson E M. Alzheimer’s disease pathology in non-demented elderly. J Alzheimer’s Dis, 1998, 1: 81–89Google Scholar
  7. 7.
    Schmitt F A, Davis D G, Wekstein D R, et al. “Preclinical” AD revisited: neuropathology of cognitively normal older adults. Neurology, 2000, 55: 370–376 10932270, 1:STN:280:DC%2BD3cvgs1Gjsg%3D%3DPubMedGoogle Scholar
  8. 8.
    Goldman W P, Price J L, Storandt M et al. Absence of cognitive impairment or decline in preclinical Alzheimer’s disease. Neurology, 2001, 56: 361–367 11171902, 1:STN:280:DC%2BD3M7psVWitw%3D%3DPubMedGoogle Scholar
  9. 9.
    Lipton A M, Cullum C M, Satumtira S, et al. Contribution of asymmetric synapse loss to lateralizing clinical deficits in frontotemporal dementias. Arch Neurol, 2001, 58: 1233–1239 11493163, 1:STN:280:DC%2BD3MvosVOitg%3D%3D, 10.1001/archneur.58.8.1233PubMedGoogle Scholar
  10. 10.
    Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science, 2002, 298: 789–791 12399581, 1:CAS:528:DC%2BD38XotFSnur0%3D, 10.1126/science.1074069PubMedGoogle Scholar
  11. 11.
    Coleman P D, Yao P J. Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging, 2003, 24: 1023–1027 14643374, 1:CAS:528:DC%2BD3sXpt1Cjsr0%3D, 10.1016/j.neurobiolaging.2003.09.001PubMedGoogle Scholar
  12. 12.
    Gylys K H, Fein J A, Yang F, et al. Synaptic changes in Alzheimer’s disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. Am J Pathol, 2004, 165: 1809–1817 15509549, 1:CAS:528:DC%2BD2cXhtVCgsbrE, 10.1016/S0002-9440(10)63436-0PubMedPubMedCentralGoogle Scholar
  13. 13.
    Scheff S W, Price D A. Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging, 2003, 24: 1029–1046 14643375, 1:CAS:528:DC%2BD3sXpt1Cjsro%3D, 10.1016/j.neurobiolaging.2003.08.002PubMedGoogle Scholar
  14. 14.
    Scheff S W, Price D A, Schmitt F A, et al. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging, 2006, 27: 1372–1384 16289476, 1:CAS:528:DC%2BD28XoslKrs7s%3D, 10.1016/j.neurobiolaging.2005.09.012PubMedGoogle Scholar
  15. 15.
    Pimplikar S W, Nixon R A, Robakis N K, et al. Mini-Symposium: Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci, 2010, 30: 14946–14954 21068297, 1:CAS:528:DC%2BC3cXhsV2nurvP, 10.1523/JNEUROSCI.4305-10.2010PubMedPubMedCentralGoogle Scholar
  16. 16.
    Goussakov I, Miller M B, Stutzmann G E. NMDA-mediated Ca2+ influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease mice. J Neurosci, 2010, 30: 12128–12137 20826675, 1:CAS:528:DC%2BC3cXhtF2qsLfP, 10.1523/JNEUROSCI.2474-10.2010PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hu N W, Ondrejcak T, Rowan M J. Glutamate receptors in preclinical research on Alzheimer’s disease: Update on recent advances. Pharmacol Biochem Behav, 2011, In PressGoogle Scholar
  18. 18.
    Cerpa W, Dinamarca M C, Inestrosa N C. Structure-function implications in Alzheimer’s disease: effect of Abeta oligomers at central synapses. Curr Alzheimer Res, 2008, 5: 233–243 18537540, 1:CAS:528:DC%2BD1cXmtFaktrg%3D, 10.2174/156720508784533321PubMedGoogle Scholar
  19. 19.
    Brion J P, Ando K, Heraud C, et al. Modulation of tau pathology in tau transgenic models. Biochem Soc Trans, 2010, 38: 996–1000 20658992, 1:CAS:528:DC%2BC3cXptlyls7s%3D, 10.1042/BST0380996PubMedGoogle Scholar
  20. 20.
    Gouras G, Tampellini D, Takahashi R, et al. Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathologica, 2010, 119: 523–541 20354705, 1:CAS:528:DC%2BC3cXkt1Wqs7w%3D, 10.1007/s00401-010-0679-9PubMedPubMedCentralGoogle Scholar
  21. 21.
    Peethumnongsin E, Yang L, Kallhoff-Muñoz V, et al. Convergence of presenilin- and tau-mediated pathways on axonal trafficking and neuronal function. J Neurosci, 2010, 30: 13409–13418 20926667, 1:CAS:528:DC%2BC3cXhtlars7fJ, 10.1523/JNEUROSCI.1964-10.2010PubMedPubMedCentralGoogle Scholar
  22. 22.
    Yuste R, Majewska A, Holthoff K. From form to function: calcium compartmentalization in dendritic spines. Nat Neurosci, 2000, 3: 653–659 10862697, 1:CAS:528:DC%2BD3cXkvFarur4%3D, 10.1038/76609PubMedGoogle Scholar
  23. 23.
    Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci, 2008, 9: 206–221 18270515, 1:CAS:528:DC%2BD1cXitFKntbo%3D, 10.1038/nrn2286PubMedGoogle Scholar
  24. 24.
    Sorra K E, Harris K M. Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus, 2000, 10: 501–511 11075821, 1:STN:280:DC%2BD3M7hvFyntw%3D%3D, 10.1002/1098-1063(2000)10:5<501::AID-HIPO1>3.0.CO;2-TPubMedGoogle Scholar
  25. 25.
    Zhang W, Benson D L. Development and molecular organization of dendritic spines and their synapses. Hippocampus, 2000, 10: 512–526 11075822, 1:CAS:528:DC%2BD3cXnvV2ksbw%3D, 10.1002/1098-1063(2000)10:5<512::AID-HIPO2>3.0.CO;2-MPubMedGoogle Scholar
  26. 26.
    Zucker R S. Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol, 1999, 9: 305–313 10395573, 1:CAS:528:DyaK1MXktVylu7c%3D, 10.1016/S0959-4388(99)80045-2PubMedGoogle Scholar
  27. 27.
    Higley M J, Sabatini B L. Calcium signaling in dendrites and spines: practical and functional considerations. Neuron, 2008, 59: 902–913 18817730, 1:CAS:528:DC%2BD1cXht1amsbfJ, 10.1016/j.neuron.2008.08.020PubMedGoogle Scholar
  28. 28.
    Berridge M J. Neuronal calcium signaling. Neuron, 1998, 21: 13–26 9697848, 1:CAS:528:DyaK1cXltFyiu7s%3D, 10.1016/S0896-6273(00)80510-3PubMedGoogle Scholar
  29. 29.
    Berridge M J, Lipp P, Bootman M D. The versatility and universality of calcium signaling. Mol Cell Biol, 2000, 1: 11–21 1:CAS:528:DC%2BD3MXivVGjtLs%3DGoogle Scholar
  30. 30.
    Mattson M P. Calcium and neurodegeneration. Aging Cell, 2007, 6: 337–350 17328689, 1:CAS:528:DC%2BD2sXntVOjsr4%3D, 10.1111/j.1474-9726.2007.00275.xPubMedGoogle Scholar
  31. 31.
    Bezprozvanny I. Calcium signaling and neurodegenerative diseases. Trends Mol Med, 2009, 15: 89–100 19230774, 1:CAS:528:DC%2BD1MXjt1ahu7s%3D, 10.1016/j.molmed.2009.01.001PubMedPubMedCentralGoogle Scholar
  32. 32.
    Stutzmann G E. The pathogenesis of Alzheimer’s disease-is it a lifelong “calciumopathy”? Neuroscientist, 2007, 13: 546–559 17901262, 1:CAS:528:DC%2BD2sXhtFyju73L, 10.1177/1073858407299730PubMedGoogle Scholar
  33. 33.
    Bezprozvanny I, Mattson M P. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci, 2008, 15: 454–463 10.1016/j.tins.2008.06.005, 1:CAS:528:DC%2BD1cXhtVKnurzIGoogle Scholar
  34. 34.
    Foskett J K, White C, Cheung K H, et al. Inositol Trisphosphate Receptor Ca2+ Release Channels Physiol Rev, 2007, 87: 593–658 1:CAS:528:DC%2BD2sXoslGlsrw%3DPubMedGoogle Scholar
  35. 35.
    Finch E, Turner T, Goldin S. Calcium as a coagonist of inositol-1,4,5-trisphosphate-induced calcium release. Science, 1991, 252: 443–446 2017683, 1:CAS:528:DyaK3MXktVegsL4%3D, 10.1126/science.2017683PubMedGoogle Scholar
  36. 36.
    Friel D, Tsien R. A caffeine- and ryanodine-sensitive Ca2+ store in bullfrog sympathetic neurons modulates effects of Ca2+ entry on [Ca2+]i. J Physiol, 1992, 450: 217–246 1432708, 1:CAS:528:DyaK38XhslSks7k%3DPubMedPubMedCentralGoogle Scholar
  37. 37.
    Verkhratsky A. The endoplasmic reticulum and neuronal calcium signaling. Cell Calcium, 2002, 32: 393–404 12543098, 1:CAS:528:DC%2BD3sXhtFKnurw%3D, 10.1016/S0143416002001896PubMedGoogle Scholar
  38. 38.
    Gunter T, Yule D, Gunter, et al. Calcium and mitochondria. FEBS Letters, 2004, 567: 96–102 15165900, 1:CAS:528:DC%2BD2cXksVGht7g%3D, 10.1016/j.febslet.2004.03.071PubMedGoogle Scholar
  39. 39.
    Tolar M, Keller J N, Chan S, et al. Truncated apolipoprotein E (ApoE) causes increased intracellular calcium and may mediate ApoE neurotoxicity. J Neurosci, 1999, 19: 7100–7110 10436064, 1:CAS:528:DyaK1MXlt1ChtrY%3DPubMedGoogle Scholar
  40. 40.
    Dreses-Werringloer U, Lambert J C, Vingtdeux V, et al. A polymorphism in CALHM1 influences Ca2+ homeostasis, Aβ levels, and Alzheimer’s disease risk. Cell, 2008, 133: 1149–1161 18585350, 1:CAS:528:DC%2BD1cXosFWku7s%3D, 10.1016/j.cell.2008.05.048PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ito E, Oka K, Etcheberrigaray R, et al. Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer’s disease. Proc Natl Acad Sci, 1994, 91: 534–538 8290560, 1:CAS:528:DyaK2cXhtlWgtrg%3D, 10.1073/pnas.91.2.534PubMedPubMedCentralGoogle Scholar
  42. 42.
    Guo Q, Furukawa K, Sopher B L, et al. Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta peptide. Neuroreport, 1996, 8: 379–383 9051814, 1:CAS:528:DyaK2sXhvFeksLw%3D, 10.1097/00001756-199612200-00074PubMedGoogle Scholar
  43. 43.
    Leissring M A, Paul B A, Parker I, et al. Alzheimer’s presenilin-1 mutation potentiates inositol 1,4,5-triphosphate-mediated calcium signaling in Xenopus oocytes. J Neurochem, 1999, 72: 1061–1068 10037477, 1:CAS:528:DyaK1MXhsFWgs7s%3D, 10.1046/j.1471-4159.1999.0721061.xPubMedGoogle Scholar
  44. 44.
    Oddo S, Caccamo A, Shepherd J D, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron, 2003, 39: 409–421 12895417, 1:CAS:528:DC%2BD3sXmsFOksro%3D, 10.1016/S0896-6273(03)00434-3PubMedGoogle Scholar
  45. 45.
    Stuzmann G E, Caccamo A, LaFerla F M, et al. Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J Neurosci, 2004, 24: 508–513 10.1523/JNEUROSCI.4386-03.2004, 1:CAS:528:DC%2BD2cXpvVyjtA%3D%3DGoogle Scholar
  46. 46.
    Stutzmann G E, Smith I, Caccamo A, et al. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci, 2006, 26: 5180–5189 16687509, 1:CAS:528:DC%2BD28Xlt1Cju7Y%3D, 10.1523/JNEUROSCI.0739-06.2006PubMedGoogle Scholar
  47. 47.
    Tu H, Nelson O, Bezprozvanny A, et al. Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell, 2006, 126: 981–993 16959576, 1:CAS:528:DC%2BD28XpvVKiuro%3D, 10.1016/j.cell.2006.06.059PubMedPubMedCentralGoogle Scholar
  48. 48.
    Nelson O, Tu H, Lei T, et al. Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1. J Clin Invest, 2007, 117: 1230–1239 17431506, 1:CAS:528:DC%2BD2sXlt1Omt7g%3D, 10.1172/JCI30447PubMedPubMedCentralGoogle Scholar
  49. 49.
    Cheung K H, Shineman D, Müller M, et al. Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron, 2008, 58: 871–883 18579078, 1:CAS:528:DC%2BD1cXotFyrsLw%3D, 10.1016/j.neuron.2008.04.015PubMedPubMedCentralGoogle Scholar
  50. 50.
    Cheung K, Mei L, Mak D, et al. Gain-of-function enhancement of IP3 receptor modal gating by familial Alzheimer’s disease-linked presenilin mutants in human cells and mouse neurons. Sci Signal, 2010, 3: 22–30 10.1126/scisignal.2000818, 1:CAS:528:DC%2BC3cXhtFektb3EGoogle Scholar
  51. 51.
    Smith I F, Hitt B, Green K N, et al. Enhanced caffeine-induced Ca2+ release in the 3×Tg-AD mouse model of Alzheimer’s disease. J Neurochem, 2005, 94: 1711–1718 16156741, 1:CAS:528:DC%2BD2MXhtVaksbvF, 10.1111/j.1471-4159.2005.03332.xPubMedGoogle Scholar
  52. 52.
    Koizumi S, Lipp P, Berridge M J, et al. Regulation of ryanodine receptor opening by lumenal Ca2+ underlies quantal Ca2+ release in PC12 cells. J Biol Chem, 1999, 274: 33327–33333 10559210, 1:CAS:528:DyaK1MXns1aqurg%3D, 10.1074/jbc.274.47.33327PubMedGoogle Scholar
  53. 53.
    Berridge M J. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium, 2002, 32: 235–249 12543086, 1:CAS:528:DC%2BD3sXhtFKntLc%3D, 10.1016/S0143416002001823PubMedGoogle Scholar
  54. 54.
    Rybalchenko V, Hwang S Y, Rybalchenko N, et al. The cytosolic N-terminus of presenilin-1 potentiates mouse ryanodine receptor single channel activity. Int J Biochem Cell Biol, 2008, 40: 84–97 17709274, 1:CAS:528:DC%2BD2sXht1ylsbrO, 10.1016/j.biocel.2007.06.023PubMedGoogle Scholar
  55. 55.
    Chan S L, Mayne M, Holden C P, et al. Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem, 2000, 275: 18195–18200 10764737, 1:CAS:528:DC%2BD3cXktlymtLc%3D, 10.1074/jbc.M000040200PubMedGoogle Scholar
  56. 56.
    Chakroborty S, Goussakov I, Miller M B, et al. Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3×Tg-AD mice. J Neurosci, 2009, 29: 9458–9470 19641109, 1:CAS:528:DC%2BD1MXpsFOntrc%3D, 10.1523/JNEUROSCI.2047-09.2009PubMedGoogle Scholar
  57. 57.
    Supnet C, Grant J, Kong H, et al. Amyloid-beta-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. J Biol Chem, 2006, 281: 38440–38447 17050533, 1:CAS:528:DC%2BD28Xht12msr7E, 10.1074/jbc.M606736200PubMedGoogle Scholar
  58. 58.
    Supnet C, Noonan C, Richard J, et al. Up-regulation of the type 3 ryanodine receptor is neuroprotective in the TgCRND8 mouse model of Alzheimer’s disease. J Neurochem, 2010, 112: 356–365 19903243, 1:CAS:528:DC%2BC3cXhtVGju74%3D, 10.1111/j.1471-4159.2009.06487.xPubMedGoogle Scholar
  59. 59.
    Lai F A, Dent M, Wickenden C, et al. Expression of a cardiac Ca2+-release channel isoform in mammalian brain. Biochem J, 1992, 288: 553–564 1334409, 1:CAS:528:DyaK38XmtlSktb4%3DPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hertle D N, Yeckel M F. Distribution of inositol-1,4,5-trisphosphate receptor isotypes and ryanodine receptor isotypes during maturation of the rat hippocampus. Neuroscience, 2007, 150: 625–638 17981403, 1:CAS:528:DC%2BD2sXhsVWjtrbJ, 10.1016/j.neuroscience.2007.09.058PubMedPubMedCentralGoogle Scholar
  61. 61.
    Bruno A, Huang J, Bennett D A, et al. Altered ryanodine receptor expression in mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 2011, In PressGoogle Scholar
  62. 62.
    Demuro A, Mina E, Kayed R, et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem, 2005, 280: 17294–17300 15722360, 1:CAS:528:DC%2BD2MXjsFOguro%3D, 10.1074/jbc.M500997200PubMedGoogle Scholar
  63. 63.
    Glabe C C. Amyloid accumulation and pathogenesis of Alzheimer’s disease: significance of monomeric, oligomeric and fibrillar Abeta. Subcell Biochem, 2005, 38: 167–177 15709478, 1:CAS:528:DC%2BD2MXotFaktr0%3D, 10.1007/0-387-23226-5_8PubMedGoogle Scholar
  64. 64.
    Deshpande A, Mina E, Glabe C G, et al. Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci, 2006, 26: 6011–6018 16738244, 1:CAS:528:DC%2BD28XlvVOntr8%3D, 10.1523/JNEUROSCI.1189-06.2006PubMedGoogle Scholar
  65. 65.
    Pierrot N, Ghisdal P, Caumont A S, et al. Intraneuronal amyloid-beta-42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death. J Neurochem, 2004, 88: 1140–1150 15009669, 1:CAS:528:DC%2BD2cXhvFOrurg%3D, 10.1046/j.1471-4159.2003.02227.xPubMedGoogle Scholar
  66. 66.
    McGowan E, Pickford F, Kim J, et al. Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron, 2005, 47: 191–199 16039562, 1:CAS:528:DC%2BD2MXntVSmsbo%3D, 10.1016/j.neuron.2005.06.030PubMedPubMedCentralGoogle Scholar
  67. 67.
    Querfurth H W, Selkoe D J. Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry, 1994, 33: 4550–4561 8161510, 1:CAS:528:DyaK2cXisVWkt7s%3D, 10.1021/bi00181a016PubMedGoogle Scholar
  68. 68.
    Avila J, Perez M, Lim F, et al. Tau in neurodegenerative diseases: tau phosphorylation and assembly. Neurotox Res, 2004, 6: 477–482 15639780, 1:STN:280:DC%2BD2M%2FhsVCmsQ%3D%3D, 10.1007/BF03033284PubMedGoogle Scholar
  69. 69.
    Corder E H, Saunders A M, Strittmatter W J, et al. Gene dose of apolipoprotein E type 4 allele and risk of Alzheimer’s disease in late onset families. Science, 1993, 261: 921–923 8346443, 1:CAS:528:DyaK3sXmtVWjur8%3D, 10.1126/science.8346443PubMedGoogle Scholar
  70. 70.
    Farrer L A, Cupples L A, Haimes J L, et al. Effects of age, sex and ethnicity on the association between apolipoprotein E genotype and Alzheimer’s disease. A meta-analysis. APOE and Alzheimer’s disease Meta Analysis Consortium. JAMA, 1997, 278: 1349–1356 1:STN:280:DyaK1c%2FgtFKgsA%3D%3DPubMedGoogle Scholar
  71. 71.
    Namba Y, Tomonaga M, Kawasaki H et al. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jacob disease. Brain Res, 1991, 541: 163–166 2029618, 1:CAS:528:DyaK3MXhsVSqsLc%3D, 10.1016/0006-8993(91)91092-FPubMedGoogle Scholar
  72. 72.
    Toescue E C, Verkhratsky A. Neuronal aging from an intraneuronal perspective: roles of endoplasmic reticulum and mitochondria. Cell Calcium, 2003, 34: 311–323 10.1016/S0143-4160(03)00142-8, 1:CAS:528:DC%2BD3sXlvFGgs74%3DGoogle Scholar
  73. 73.
    Park M K, Choi Y M, Kang Y K, et al. The endoplasmic reticulum as an integrator of multiple dendritic events. Neuroscientist, 2008, 14: 68–77 17911213, 1:CAS:528:DC%2BD1cXhslKrtLc%3D, 10.1177/1073858407305691PubMedGoogle Scholar
  74. 74.
    Emptage N J, Reid C A, Fine A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron, 2001, 29: 197–208 11182091, 1:CAS:528:DC%2BD3MXisleisb4%3D, 10.1016/S0896-6273(01)00190-8PubMedGoogle Scholar
  75. 75.
    Zucker R S, Regehr W G. Short-term synaptic plasticity. Annu Rev Physiol, 2002, 64: 355–405 11826273, 1:CAS:528:DC%2BD38XisFGmsLk%3D, 10.1146/annurev.physiol.64.092501.114547PubMedGoogle Scholar
  76. 76.
    Kuromi H, Kidokoro Y. Selective replenishment of two vesicle pools depends on the source of Ca2+ at the Drosophila synapse. Neuron, 2002, 35: 333–343 12160750, 1:CAS:528:DC%2BD38XlvVCmu7Y%3D, 10.1016/S0896-6273(02)00777-8PubMedGoogle Scholar
  77. 77.
    Bouchard R, Pattarini R, Geiger J D. Presence and functional significance of presynaptic ryanodine receptors. Prog Neurobiol, 2003, 69: 391–418 12880633, 1:CAS:528:DC%2BD3sXls1ersLw%3D, 10.1016/S0301-0082(03)00053-4PubMedGoogle Scholar
  78. 78.
    Emptage N J, Bliss T V, Fine A. Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron, 1999, 22: 115–124 10027294, 1:CAS:528:DyaK1MXhtVGiu7Y%3D, 10.1016/S0896-6273(00)80683-2PubMedGoogle Scholar
  79. 79.
    Bardo S, Cavazzini M G, Emptage N J. The role of endoplasmic reticulum calcium stores in the plasticity of central neurons. Trends Pharmacol Sci, 2006, 27: 78–84 16412523, 1:CAS:528:DC%2BD28XhtV2lsL0%3D, 10.1016/j.tips.2005.12.008PubMedGoogle Scholar
  80. 80.
    Mellström B, Naranjo J R. Mechanisms of Ca2+-dependent transcription. Curr Opin Neurobiol, 2001, 11: 312–319 11399429, 10.1016/S0959-4388(00)00213-0PubMedGoogle Scholar
  81. 81.
    Watanabe S, Hong M, Lasser-Ross N, et al. Modulation of calcium wave propagation in the dendrites and to the soma of rat hippocampal pyramidal neurons. J Physiol, 2006, 575: 455–468 16809362, 1:CAS:528:DC%2BD28XhtVCgu77E, 10.1113/jphysiol.2006.114231PubMedPubMedCentralGoogle Scholar
  82. 82.
    Stutzmann G E, LaFerla F M, Parker I. Ca2+ signaling in mouse cortical neurons studied by two-photon imaging and photoreleased inositol triphosphate. J Neurosci, 2003, 23: 758–765 12574404, 1:CAS:528:DC%2BD3sXhtlOrsb0%3DPubMedGoogle Scholar
  83. 83.
    Hagenston A M, Fitzpatrick J S, Yeckel M F. mGluR-mediated calcium waves that invade the soma regulate firing in layer V medial prefrontal cortical pyramidal neurons. Cereb Cortex, 2008, 18: 407–423 17573372, 10.1093/cercor/bhm075PubMedPubMedCentralGoogle Scholar
  84. 84.
    Ross W N, Nakamura T, Watanabe S, et al. Synaptically activated Ca2+ release from internal stores in CNS neurons. Cell Mol Neurobiol, 2005, 25: 283–295 16047542, 1:CAS:528:DC%2BD2MXksVCjtLw%3D, 10.1007/s10571-005-3060-0PubMedGoogle Scholar
  85. 85.
    Yasuda R, Sabatini B L, Svoboda K. Plasticity of calcium channels in dendritic spines. Nat Neurosci, 2003, 6: 948–955 12937422, 1:CAS:528:DC%2BD3sXms1Crt7k%3D, 10.1038/nn1112PubMedGoogle Scholar
  86. 86.
    Fitzjohn S M, Collingridge G L. Calcium stores and synaptic plasticity. Cell Calcium, 2002, 32: 405–411 12543099, 1:CAS:528:DC%2BD3sXhtFKnur0%3D, 10.1016/S0143416002001999PubMedGoogle Scholar
  87. 87.
    Raymond C R, Redman S J. Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J Physiol, 2006, 570: 97–111 16284072, 1:CAS:528:DC%2BD28Xlt1SgsQ%3D%3D, 10.1113/jphysiol.2005.098947PubMedPubMedCentralGoogle Scholar
  88. 88.
    Nishiyama M, Hong K, Mikoshiba K, et al. Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 2000, 408: 584–588 11117745, 1:STN:280:DC%2BD3M%2Fmtlehsg%3D%3D, 10.1038/35046067PubMedGoogle Scholar
  89. 89.
    Bliss T V, Collingridge G L. A synaptic model of memory: LTP in the hippocampus. Nature, 1993, 361: 31–39 8421494, 1:CAS:528:DyaK3sXntlOntw%3D%3D, 10.1038/361031a0PubMedGoogle Scholar
  90. 90.
    Martin S J, Grimwood P D, Morris R G M. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu Rev Neurosci, 2000, 23: 649–711 10845078, 1:CAS:528:DC%2BD3cXjs1Gms7g%3D, 10.1146/annurev.neuro.23.1.649PubMedGoogle Scholar
  91. 91.
    Whitlock J R, Heynen A J, Shuler M G, et al. Learning induces long-term potentiation in the hippocampus. Science, 2006, 313: 1093–1097 16931756, 1:CAS:528:DC%2BD28XotlCgtbo%3D, 10.1126/science.1128134PubMedGoogle Scholar
  92. 92.
    Villarreal D M, Do V, Haddad E, et al. NMDA receptor antagonists sustain LTP and spatial memory: active processes mediate LTP decay. Nat Neurosci, 2001, 5: 48–52 10.1038/nn776, 1:CAS:528:DC%2BD38XjtlGjsw%3D%3DGoogle Scholar
  93. 93.
    Malenka R C, Bear M F. LTP and LTD: an embarrassment of riches. Neuron, 2004, 44: 5–21 15450156, 1:CAS:528:DC%2BD2cXovVOlu7Y%3D, 10.1016/j.neuron.2004.09.012PubMedGoogle Scholar
  94. 94.
    Ling D S, Benardo L S, Serrano P A, et al. Protein kinase Mzeta is necessary and sufficient for LTP maintenance. Nat Neurosci, 2002, 5: 295–296 11914719, 1:CAS:528:DC%2BD38Xis1Kis78%3D, 10.1038/nn829PubMedGoogle Scholar
  95. 95.
    Morris R G M, Frey U. Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience? Philos Trans R Soc Lond B Biol Sci, 1997, 352: 1489–1503 9368938, 1:STN:280:DyaK1c%2FjsFCjtA%3D%3D, 10.1098/rstb.1997.0136PubMedPubMedCentralGoogle Scholar
  96. 96.
    Pastalkova E, Serrano P, Pinkhasova D, et al. Storage of spatial information by the maintenance mechanism of LTP. Science, 2006, 313: 1141–1144 16931766, 1:CAS:528:DC%2BD28XotlCgtb0%3D, 10.1126/science.1128657PubMedGoogle Scholar
  97. 97.
    Tsien J Z, Chen D F, Gerber D, et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell, 1996, 87: 1317–1326 8980237, 1:CAS:528:DyaK2sXit12qtA%3D%3D, 10.1016/S0092-8674(00)81826-7PubMedGoogle Scholar
  98. 98.
    Cummings J A, Mulkey R M, Nicoll R A, et al. Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron. 1996, 16: 825–833 8608000, 1:CAS:528:DyaK28XislCmsL8%3D, 10.1016/S0896-6273(00)80102-6PubMedGoogle Scholar
  99. 99.
    Foster T C. Calcium homeostasis and modulation of synaptic plasticity in the aged brain. Aging Cell, 2007; 6: 319–325 17517041, 1:CAS:528:DC%2BD2sXntVKqu7Y%3D, 10.1111/j.1474-9726.2007.00283.xPubMedGoogle Scholar
  100. 100.
    Lisman J, Schulman H, Cline H. The molecular basis of CAMKII function in synaptic and behavioral memory. Nat Rev Neurosci, 2002, 3: 175–190 11994750, 1:CAS:528:DC%2BD38Xit1GrtLk%3D, 10.1038/nrn753PubMedGoogle Scholar
  101. 101.
    Hayashi Y, Shi S H, Esteban J A, et al. Driving AMPA receptors into synapses by LTP and CAMKII: requirement for GluR1 and PDZ domain interaction. Science, 2000, 287: 2262–2267 10731148, 1:CAS:528:DC%2BD3cXitlSntb4%3D, 10.1126/science.287.5461.2262PubMedGoogle Scholar
  102. 102.
    Malinow R, Malenka R C. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci, 2002, 25: 103–126 12052905, 1:CAS:528:DC%2BD38XmtF2hsLw%3D, 10.1146/annurev.neuro.25.112701.142758PubMedGoogle Scholar
  103. 103.
    Bredt D S, Nicoll R A. AMPA receptor trafficking at excitatory synapses. Neuron, 2003, 40: 361–379 14556714, 1:CAS:528:DC%2BD3sXosFCqsrY%3D, 10.1016/S0896-6273(03)00640-8PubMedGoogle Scholar
  104. 104.
    Bito H, Takemoto-Kimura S. Ca2+/CREB/CBP-dependent gene regulation: a shared mechanism critical in long-term synaptic plasticity and neuronal survival. Cell Calcium, 2003, 34: 25–30 10.1016/S0143-4160(03)00140-4, 1:CAS:528:DC%2BD3sXlvFGgs7Y%3DGoogle Scholar
  105. 105.
    Mulkey R M, Malenka R C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron, 1992: 9: 967–975 1419003, 1:CAS:528:DyaK3sXhsVSgtL8%3D, 10.1016/0896-6273(92)90248-CPubMedGoogle Scholar
  106. 106.
    Mulkey R M, Endo S, Shenolikar S, et al. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature, 1994, 369: 486–488 7515479, 1:CAS:528:DyaK2cXksl2nsLk%3D, 10.1038/369486a0PubMedGoogle Scholar
  107. 107.
    Beattie E C, Carroll R C, Yu X, et al. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat Neurosci, 2000, 3: 1291–1300 11100150, 1:CAS:528:DC%2BD3cXosVGgsbs%3D, 10.1038/81823PubMedGoogle Scholar
  108. 108.
    Lee S H, Liu L, Wang Y T et al. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron, 2002, 36: 661–674 12441055, 1:CAS:528:DC%2BD38Xpt1Kgs70%3D, 10.1016/S0896-6273(02)01024-3PubMedGoogle Scholar
  109. 109.
    Harris K M, Stevens J K, Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci, 1989, 9: 2982–2997 2769375, 1:STN:280:DyaL1MzmtFKltg%3D%3DPubMedGoogle Scholar
  110. 110.
    Spacek J, Harris K M. Three dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of immature and mature rat. J Neurosci, 1997, 17: 190–203 8987748, 1:CAS:528:DyaK2sXnsVCgPubMedGoogle Scholar
  111. 111.
    Sharp A H, McPherson P S, Dawson T M, et al. Differential immunohistochemical localization of inositol-1,4,5-trisphosphate- ad ryanodine-sensitive Ca2+ release in channels in rat brain. J Neurosci, 1993, 13: 3051–3063 8392539, 1:CAS:528:DyaK3sXmtVSitLY%3DPubMedGoogle Scholar
  112. 112.
    Nakamura T, Barbara J G, Nakamura K, et al. Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron, 1999, 24: 727–737 10595522, 1:CAS:528:DyaK1MXnvFyjsro%3D, 10.1016/S0896-6273(00)81125-3PubMedGoogle Scholar
  113. 113.
    Alford S, Frenguelli B G, Schofield J G, et al. Characterization of Ca2+ signals induced in hippocampal CA1 neurons by the synaptic activation of NMDA receptors. J Physiol, 1993, 469: 693–716 8271224, 1:CAS:528:DyaK3sXmtFyjs7o%3DPubMedPubMedCentralGoogle Scholar
  114. 114.
    Obenaus A, Mody I, Baimbridge K G. Dantrolene-Na (Dantrium) blocks induction of long-term potentiation in hippocampal slices. Neurosci Lett, 1989, 98: 172–178 2710411, 1:CAS:528:DyaL1MXhvVKnu70%3D, 10.1016/0304-3940(89)90505-3PubMedGoogle Scholar
  115. 115.
    Harvey J, Collingridge G L. Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices. Neurosci Lett, 1992, 139: 197–200 1319014, 1:CAS:528:DyaK38Xlt1Gjur4%3D, 10.1016/0304-3940(92)90551-HPubMedGoogle Scholar
  116. 116.
    Futatsugi A, Kato K, Ogura H, et al. Facilitation of NMDAR-independent LTP and spatial learning in mutant mice lacking ryanodine receptor type 3. Neuron, 1999, 24: 701–713 10595520, 1:CAS:528:DyaK1MXnvFyjsrw%3D, 10.1016/S0896-6273(00)81123-XPubMedGoogle Scholar
  117. 117.
    Fujii S, Matsumoto M, Igarashi K, et al. Synaptic plasticity in hippocampal CA1 neurons of mice lacking type 1 inositol-1,4,5-triphos-phate receptors. Learn Mem, 2000, 7: 312–320 11040263, 1:STN:280:DC%2BD3M%2FivFegsg%3D%3D, 10.1101/lm.34100PubMedPubMedCentralGoogle Scholar
  118. 118.
    Rowan M J, Klyubin I, Cullen W K, et al. Synaptic plasticity in animal models of early Alzheimer’s disease. Philos Trans R Soc Lond B Biol Sci, 2003, 358: 821–828 12740129, 1:CAS:528:DC%2BD3sXktlSrurg%3D, 10.1098/rstb.2002.1240PubMedPubMedCentralGoogle Scholar
  119. 119.
    Kawahara M, Kuroda Y. Molecular mechanism of neurodegeneration induced by Alzheimer’s beta-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res Bull, 2000, 53: 389–397 11136994, 1:CAS:528:DC%2BD3cXovFGqt7k%3D, 10.1016/S0361-9230(00)00370-1PubMedGoogle Scholar
  120. 120.
    Selkoe D J. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res, 2008, 192: 106–113 18359102, 1:CAS:528:DC%2BD1cXmvV2itr8%3D, 10.1016/j.bbr.2008.02.016PubMedPubMedCentralGoogle Scholar
  121. 121.
    Shankar G M, Li S, Mehta T H, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med, 2008, 14: 837–842 18568035, 1:CAS:528:DC%2BD1cXptlKltb0%3D, 10.1038/nm1782PubMedPubMedCentralGoogle Scholar
  122. 122.
    Lin H, Bhatia R, Lal R. Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J, 2001, 15: 2433–2444 11689468, 1:CAS:528:DC%2BD3MXoslSisrs%3D, 10.1096/fj.01-0377comPubMedGoogle Scholar
  123. 123.
    Mattson M P, Chan S L. Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium, 2003, 34: 385–397 12909083, 1:CAS:528:DC%2BD3sXlvFGgs7s%3D, 10.1016/S0143-4160(03)00128-3PubMedGoogle Scholar
  124. 124.
    Kuchibhotla K V, Goldman S T, Lattarulo C R, et al. Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron, 2008, 59: 214–225 18667150, 1:CAS:528:DC%2BD1cXpsFOgtrk%3D, 10.1016/j.neuron.2008.06.008PubMedPubMedCentralGoogle Scholar
  125. 125.
    Koffie RM, Meyer-Luehmann M, Hashimoto T, et al. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci, 2009, 106: 4012–4017 19228947, 1:CAS:528:DC%2BD1MXjt1eis70%3D, 10.1073/pnas.0811698106PubMedPubMedCentralGoogle Scholar
  126. 126.
    Zhang C, Wu B, Beglopoulos V, et al. Presenilins are essential for regulating neurotransmitter release. Nature, 2009, 460: 632–636 19641596, 1:CAS:528:DC%2BD1MXpt1Wgsr4%3D, 10.1038/nature08177PubMedPubMedCentralGoogle Scholar
  127. 127.
    Parent A, Linden D J, Sisodia S S, et al. Synaptic transmission and hippocampal long-term potentiation in transgenic mice expressing FAD-linked presenilin 1. Neurobiol Dis, 1999, 6: 56–62 10078973, 1:CAS:528:DyaK1MXhslymt7o%3D, 10.1006/nbdi.1998.0207PubMedGoogle Scholar
  128. 128.
    Parent A T, Barnes N Y, Taniguchi Y, et al. Presenilin attenuates receptor-mediated signaling and synaptic function. J Neurosci, 2005, 25: 1540–1549 15703408, 1:CAS:528:DC%2BD2MXhs1Klsrw%3D, 10.1523/JNEUROSCI.3850-04.2005PubMedGoogle Scholar
  129. 129.
    Verkhratsky A. Physiology and pathophysiology of calcium store in the endoplasmic reticulum of neurons. Physiol Rev, 2005, 85: 201–279 15618481, 1:CAS:528:DC%2BD2MXotFaltw%3D%3D, 10.1152/physrev.00004.2004PubMedGoogle Scholar
  130. 130.
    Mattson M P, Gary D S, Chan S L, et al. Perturbed endoplasmic reticulum function, synaptic apoptosis and the pathogenesis of Alzheimer’s disease. Biochem Soc Symp, 2001, 67: 151–162 11447832, 1:CAS:528:DC%2BD3MXlvVygsLY%3DPubMedGoogle Scholar
  131. 131.
    Mattson M P. ER calcium and Alzheimer’s disease: in a state of flux. Sci Signal, 2010, 3: pe10 20332425, 10.1126/scisignal.3114pe10, 1:CAS:528:DC%2BC3cXhtFektbrMPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2011

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of NeuroscienceRosalind Franklin University/the Chicago Medical SchoolNorth ChicagoUSA

Personalised recommendations