Science China Life Sciences

, Volume 54, Issue 6, pp 502–512 | Cite as

Viral proteomics: The emerging cutting-edge of virus research

  • ShengTao Zhou
  • Rui Liu
  • Xia ZhaoEmail author
  • CanHua HuangEmail author
  • YuQuan Wei
Open Access


Viruses replicate and proliferate in host cells while continuously adjusting to and modulating the host environment. They encode a wide spectrum of multifunctional proteins, which interplay with and modify proteins in host cells. Viral genomes were chronologically the first to be sequenced. However, the corresponding viral proteomes, the alterations of host proteomes upon viral infection, and the dynamic nature of proteins, such as post-translational modifications, enzymatic cleavage, and activation or destruction by proteolysis, remain largely unknown. Emerging high-throughput techniques, in particular quantitative or semi-quantitative mass spectrometry-based proteomics analysis of viral and cellular proteomes, have been applied to define viruses and their interactions with their hosts. Here, we review the major areas of viral proteomics, including virion proteomics, structural proteomics, viral protein interactomics, and changes to the host cell proteome upon viral infection.


virus proteomics virion proteomics virus host interaction 


  1. 1.
    Karen L M, Lori F. Viral proteomics. Microbiol Mol Biol Rev, 2007, 71: 398–411 10.1128/MMBR.00042-06CrossRefGoogle Scholar
  2. 2.
    Yuan K, Lei Y L, Huang C. Application of chemistry-based functional proteomics to screening for novel drug targets. Comb Chem High Throughput Screen, 2010, 13: 414–421 20156143, 10.2174/138620710791292976, 1:CAS:528:DC%2BC3cXosFCntbg%3DPubMedCrossRefGoogle Scholar
  3. 3.
    Liu R, Bai S J, Li Z J, et al. Mechanism of cancer cell adaptation to metabolic stress: proteomics identification of a novel thyroid hormone-mediated gastric carcinogenic signalling pathway. Mol Cell Proteomics, 2009, 8: 70–85 18723843, 10.1074/mcp.M800195-MCP200, 1:CAS:528:DC%2BD1MXpsFeqsA%3D%3DPubMedCrossRefGoogle Scholar
  4. 4.
    Miklos G L, Maleszka R. Protein functions and biological contexts. Proteomics, 2001: 169–178Google Scholar
  5. 5.
    Nair K S, Asmann Y W, Short K R, et al. Proteomic research: potential opportunities for clinical and physiological investigators. Am J Physiol Endocrinol Metab, 2004, 286: 863–874 10.1152/ajpendo.00370.2003CrossRefGoogle Scholar
  6. 6.
    Fields B N, Howley P M. Fundamental virology. In: Principles of Virus Structure, 3rd ed. Philadelphia: Lippincott, Williams & Willkins, 1996. 59–100Google Scholar
  7. 7.
    Kalkkinen N, Soderlund H, Kaariainen L. Analysis of semliki-forest-virus structural proteins to illustrate polyprotein processing of alpha viruses. Eur J Biochem, 1980, 108: 31–37 7408852, 10.1111/j.1432-1033.1980.tb04692.x, 1:CAS:528:DyaL3cXks1erurk%3DPubMedCrossRefGoogle Scholar
  8. 8.
    Chelius D, Shieh C H, Lehmberg E, et al. Analysis of the adenovirus type 5 proteome by liquid chromatography and tandem mass spectrometry methods. J Proteome Res, 2002, 1: 501–513 12645618, 10.1021/pr025528c, 1:CAS:528:DC%2BD38Xms1Ojur0%3DPubMedCrossRefGoogle Scholar
  9. 9.
    Davison A J, Davison M D. Identification of structural proteins of channel catfish virus by mass spectrometry. Virology, 1995, 206: 1035–1043 7856078, 10.1006/viro.1995.1026, 1:CAS:528:DyaK2MXjs1Wku7Y%3DPubMedCrossRefGoogle Scholar
  10. 10.
    Resch W G, Moore R J, Lipton M S, et al. Protein composition of the vaccinia virus mature virion. Virology, 2007, 358: 233–247 17005230, 10.1016/j.virol.2006.08.025, 1:CAS:528:DC%2BD2sXmtVWnsg%3D%3DPubMedCrossRefGoogle Scholar
  11. 11.
    Chung C S, Ho M Y, Huang C Y, et al. Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J Virol, 2006, 80: 2127–2140 16474121, 10.1128/JVI.80.5.2127-2140.2006, 1:CAS:528:DC%2BD28XhvFyhsbs%3DPubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Yoder J D, Gagnier C R, Vemulapalli S, et al. Pox proteomics: mass spectrometry analysis and identification of Vaccinia virion proteins. Virol J, 2006, 3: 10–26 16509968, 10.1186/1743-422X-3-10PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Baldick C J, Shenk T. Proteins associated with purified human cytomegalovirus particles. J Virol, 1996, 70: 6097–6105 8709233, 1:CAS:528:DyaK28XkvFGhtbg%3DPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kattenhorn L M, Wagner M, Lomsadze A, et al. Identification of proteins associated with murine cytomegalovirus virions. J Virol, 2004, 78: 11187–11197 15452238, 10.1128/JVI.78.20.11187-11197.2004, 1:CAS:528:DC%2BD2cXotlKis74%3DPubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Johannsen E, Chase M R, Weicksel S, et al. Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci USA, 2004, 101: 16286–16291 15534216, 10.1073/pnas.0407320101, 1:CAS:528:DC%2BD2cXhtVWks7nLPubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhu F X, Wu L J, Yuan Y. Virion proteins of Kaposi’s sarcoma-associated herpesvirus. J Virol, 2005, 79: 800–811 15613308, 10.1128/JVI.79.2.800-811.2005, 1:CAS:528:DC%2BD2MXlt12isQ%3D%3DPubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    O’Connor C M, Kedes D H. Mass spectrometric analyses of purified Rhesus monkey rhadinovirus reveal 33 virion-associated proteins. J Virol, 2006, 80: 1574–1583 16415032, 10.1128/JVI.80.3.1574-1583.2006PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Huang C H, Lin Q S, Xu X, et al. Proteomic analysis of shrimp white spot syndrome viral proteins and characterization of a novel envelope protein VP466. Mol Cell Proteomics, 2002, 1: 223–231 12096122, 10.1074/mcp.M100035-MCP200, 1:CAS:528:DC%2BD38Xjtleqtr4%3DPubMedCrossRefGoogle Scholar
  19. 19.
    Li Z, Chen J, Wu J L, et al. Shotgun identification of the structural proteome of shrimp white spot syndrome virus and iTRAQ differentiation of envelope and nucleocapsid subproteomes. Mol Cell Proteomics, 2007, 6: 1609–1620 17545682, 10.1074/mcp.M600327-MCP200, 1:CAS:528:DC%2BD2sXhtVGqsrzFPubMedCrossRefGoogle Scholar
  20. 20.
    Zeng R, Jiang X S, Zhou H, et al. Proteomic analysis of SARS associated coronavirus using two-dimensional liquid chromatography mass spectrometry and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by mass spectroemtric analysis. J Proteome Res, 2004, 3: 549–555 15253436, 10.1021/pr034111j, 1:CAS:528:DC%2BD2cXivVGktb0%3DPubMedCrossRefGoogle Scholar
  21. 21.
    Saphire A C, Bark S J. Proteomic analysis of human immunodeficiency virus using liquid chromatography/tandem mass spectrometry effectively distinguishes specific incorporated host proteins. J Proteome Res, 2006, 5: 530–538 16512667, 10.1021/pr050276b, 1:CAS:528:DC%2BD28XhtlSru78%3DPubMedCrossRefGoogle Scholar
  22. 22.
    Chertova E, Coren L V, Roser J D, et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol, 2006, 80: 9039–9052 16940516, 10.1128/JVI.01013-06, 1:CAS:528:DC%2BD28XpvVGhsr4%3DPubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bortz E, Whitelegge J P, Jia Q M, et al. Identification of proteins associated with murine gammaherpesvirus 68 virions. J Virol, 2003, 77: 13425–13432 14645600, 10.1128/JVI.77.24.13425-13432.2003, 1:CAS:528:DC%2BD3sXpslSmsLc%3DPubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Varnum S M, Monroe M E, Smith P, et al. Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J Virol, 2004, 78: 10960–10966 15452216, 10.1128/JVI.78.20.10960-10966.2004, 1:CAS:528:DC%2BD2cXotlKjurY%3DPubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rozen R, Li Y, Yuan Y. Virion-wide protein interactions of Kaposi’s sarcoma-associated herpesvirus. J Virol, 2008, 82: 4742–4750 18321973, 10.1128/JVI.02745-07, 1:CAS:528:DC%2BD1cXlvVKis7w%3DPubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bartel P L, Roecklein J A, SenGupta D, et al. Host and viral proteins in the virion of Kaposi’s sarcoma-associated herpesvirus. J Virol, 2005, 79: 4952–4964 10.1128/JVI.79.8.4952-4964.2005CrossRefGoogle Scholar
  27. 27.
    Vliet K V, Zhang L L, Villa N Y, et al. Poxvirus proteomics and virushost protein interactions. Microbiol Mol Biol Rev, 2009, 73: 730–749 19946139, 10.1128/MMBR.00026-09PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Oliver K B, Russel J D, Anthony L C. New insights into viral structure and virus-cell interactions through proteomics. Expert Rev Proteomics, 2005, 2: 577–588 10.1586/14789450.2.4.577CrossRefGoogle Scholar
  29. 29.
    Bortz E, Whitelegge J P, Jia Q, et al. Identification of proteins associated with murine gammaherpesvirus 68 virions. J Virol, 2003, 77: 13425–13432 14645600, 10.1128/JVI.77.24.13425-13432.2003, 1:CAS:528:DC%2BD3sXpslSmsLc%3DPubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ying W T, Zhang Y J, Peng W M, et al. Proteomic analysis on structural proteins of severe acute respiratory syndrome coronavirus. Proteomics, 2004, 4: 492–504 14760722, 10.1002/pmic.200300676, 1:CAS:528:DC%2BD2cXhs1Ciu7s%3DPubMedCrossRefGoogle Scholar
  31. 31.
    Savalia D, Westblade L F, Goel M, et al. Genomic and proteomic Analysis of phiEco32, a novel Esacherichia coli bacteriophage. J Mol Biol, 2008, 377: 774–789 18294652, 10.1016/j.jmb.2007.12.077, 1:CAS:528:DC%2BD1cXjsVSlt7w%3DPubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Robert M D, Martin N L, Kropinski A M. The genome and proteome of coliphage T1. Virology, 2004, 318: 245–266 10.1016/j.virol.2003.09.020CrossRefGoogle Scholar
  33. 33.
    Naryshkina T, Liu J, Florens L, et al. Thermus thermophilus bacteriophage phiYS40 genome and proteomic characterization of virions. J Mol Biol, 2006, 364: 667–677 17027029, 10.1016/j.jmb.2006.08.087, 1:CAS:528:DC%2BD28Xht1ersLbNPubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Beijerinck M J. Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves. Verhandelingen der Koninkyke akademie Wettenschapppen te Amsterdam, 1898, 65: 3–21Google Scholar
  35. 35.
    Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340: 245–246 2547163, 10.1038/340245a0, 1:CAS:528:DyaL1MXltlShsL8%3DPubMedCrossRefGoogle Scholar
  36. 36.
    Fields S. Interactive learning: Lessons from two hybrids over two decades. Proteomics, 2009, 9: 5209–5213 19834904, 10.1002/pmic.200900236, 1:CAS:528:DC%2BD1MXhsF2jur3IPubMedCrossRefGoogle Scholar
  37. 37.
    Mendez-Rios J, Uetz P. Global approaches to study protein-protein interactions among viruses and hosts. Future Microbiol, 2010, 5: 289–301 20143950, 10.2217/fmb.10.7, 1:CAS:528:DC%2BC3cXhvVGqtrg%3DPubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Bartel P L, SenGupta D, Fields S. A protein linkage map of Escherichia coli bacteriophage T7. Nat Genet, 1996, 12: 72–77 8528255, 10.1038/ng0196-72, 1:CAS:528:DyaK28XhsV2htg%3D%3DPubMedCrossRefGoogle Scholar
  39. 39.
    McCraith S, Moss B, Fields S. Genome-wide analysis of vaccinia virus protein-protein interactions. Proc Natl Acad Sci USA, 2000, 97: 4879–4884 10781095, 10.1073/pnas.080078197, 1:CAS:528:DC%2BD3cXivFKju7o%3DPubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Dziembowski A, Ventura A P, Rutz B, et al. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J, 2004, 23: 4847–4856 15565172, 10.1038/sj.emboj.7600482, 1:CAS:528:DC%2BD2cXhtVGitr%2FEPubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jorba N, Torreira E, Gastaminza P, et al. Analysis of the interaction of influenza virus polymerase complex with human cell factors. Proteomics, 2008, 8: 2077–2088 18491320, 10.1002/pmic.200700508, 1:CAS:528:DC%2BD1cXmvFWktb0%3DPubMedCrossRefGoogle Scholar
  42. 42.
    Mayer D, Martinez-Sobrido L, Ghanem A, et al. Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J Proteome Res, 2007, 6: 672–682 17269724, 10.1021/pr060432u, 1:CAS:528:DC%2BD28XhtlCit73LPubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Molina-Jiménez F, Murata M, Martín-Vílchez S, et al. Expression of pituitary tumor-transforming gene 1 (PTTG1)/securin in hepatitis B virus (HBV)-associated liver diseases: evidence for an HBV X protein-mediated inhibition of PTTG1 ubiquitination and degradation. Hepatol, 2010, 51: 777–787 10.1002/hep.23468CrossRefGoogle Scholar
  44. 44.
    Cristea I M, Carroll J N, Rout M P, et al. Tracking and elucidating alphavirus-host protein interactions. J Biol Chem, 2006, 281: 30269–30278 16895903, 10.1074/jbc.M603980200, 1:CAS:528:DC%2BD28XhtVahsbjJPubMedCrossRefGoogle Scholar
  45. 45.
    Hirsch A J. The use of RNAi-based screens to identify host proteins involved in viral replication. Future Microbiol, 2010, 5: 303–311 20143951, 10.2217/fmb.09.121, 1:CAS:528:DC%2BC3cXhvVGqt7s%3DPubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Brass A L, Dykxhoor D M, Benita Y, et al. Identification of host proteins required for HIV infection through a functional genomics screen. Science, 2008, 319: 921–926 18187620, 10.1126/science.1152725, 1:CAS:528:DC%2BD1cXhslOmtL4%3DPubMedCrossRefGoogle Scholar
  47. 47.
    Konig R, Zhou Y Y, Elleder D, et al. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell, 2008, 135: 49–60 18854154, 10.1016/j.cell.2008.07.032, 1:CAS:528:DC%2BD1cXht1Gkt7nOPubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Tong A P, Gou L T, Lau Q C, et al. Proteomic profiling identifies aberrant epigenetic modifications induced by hepatitis B virus X protein. J Proteome Res, 2009, 8: 1037–1046 19117405, 10.1021/pr8008622, 1:CAS:528:DC%2BD1MXhtFWlsQ%3D%3DPubMedCrossRefGoogle Scholar
  49. 49.
    Toda T, Sugimoto M, Omori A, et al. Proteomic analysis of Epstein-Barr virus-transformed human B-lymphoblastiod cell lines before and after immortalization. Electrophoresis, 2000, 21: 1814–1822 10870967, 10.1002/(SICI)1522-2683(20000501)21:9<1814::AID-ELPS1814>3.0.CO;2-#, 1:CAS:528:DC%2BD3cXkt1alsbo%3DPubMedCrossRefGoogle Scholar
  50. 50.
    Coiras M, Camafeita E, Urena T, et al. Modifications in the human T cell proteome induced by intracellular HIV-1 Tat protein expression. Proteomics, 2006, 6: S63–S73 16526095, 10.1002/pmic.200500437PubMedCrossRefGoogle Scholar
  51. 51.
    Chen X, Yu Y B, Xue Y, et al. Amino acid-coded tagging approaches in quantitative proteomics. Expert Rev Proteomics, 2007, 4: 25–37 17288513, 10.1586/14789450.4.1.25, 1:CAS:528:DC%2BD2sXhvFWkurw%3DPubMedCrossRefGoogle Scholar
  52. 52.
    Mannova P, Wang H, Deng B, et al. Modification of host lipid raft proteome upon hepatitis C virus replication. Mol Cell Proteomics, 2006, 5: 2319–2325 16943187, 10.1074/mcp.M600121-MCP200, 1:CAS:528:DC%2BD28XhtlCgu7zPPubMedCrossRefGoogle Scholar
  53. 53.
    Zhang L, Zhang X E, Lin F S, et al. Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication. J Virol, 2010, 84: 6050–6059 20392858, 10.1128/JVI.00213-10, 1:CAS:528:DC%2BC3cXnsFKns70%3DPubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Booy A T, Ohlund L B, Hardie D B, et al. Application of isotope coded affinity tag (ICAT) analysis for the identification of differentially expressed proteins following infection of atlantic salmon (Salmo salar) with infectious hematopoietic necrosis virus (IHNV) or Renibacterium salmoninarum (BKD). J Proteome Res, 2005, 4: 325–334 15822907, 10.1021/pr049840t, 1:CAS:528:DC%2BD2MXmsVSrtA%3D%3DPubMedCrossRefGoogle Scholar
  55. 55.
    Go E P, Wikoff W R, Shen Z, et al. Mass spectrometry reveals specific and global molecular transformations during viral infection. J Proteome Res, 2006, 5: 2405–2416 16944953, 10.1021/pr060215t, 1:CAS:528:DC%2BD28XotFCqt7k%3DPubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Jiang X S, Tang L Y, Dai J, et al. Quantitative analysis of severe acute respiratory syndrome (SARS)-associated coronavirus-infected cells using proteomic approach. Mol Cell Proteomics, 2005, 4: 902–913 15784933, 10.1074/mcp.M400112-MCP200, 1:CAS:528:DC%2BD2MXmtFKktbY%3DPubMedCrossRefGoogle Scholar
  57. 57.
    Chen L M, Lin Q S, Lim T K, et al. iTRAQ analysis of Singapore grouper iridovirus infection in a grouper embryonic cell line. J General Virol, 2008, 89: 2869–2876 10.1099/vir.0.2008/003681-0, 1:CAS:528:DC%2BD1cXhtlOqtL7ECrossRefGoogle Scholar
  58. 58.
    Diamond D L, Jacobs J M, Paeper B, et al. Proteomic profiling of human liver biopsies: hepatitis C virus-induced fibrosis and mitochondrial dysfunction. Hepatol, 2007, 46: 649–657 10.1002/hep.21751, 1:CAS:528:DC%2BD2sXhtFWhsrzNCrossRefGoogle Scholar
  59. 59.
    Chan E Y, Qian W J, Diamond D L, et al. Quantitative analysis of HIV-1 infected CD4+ cell proteome: dysregulated cell cycle progression and nuclear transport coincide with robust virus production. J Virol, 2007, 81: 7571–7583 17494070, 10.1128/JVI.00288-07, 1:CAS:528:DC%2BD2sXnvFaitbs%3DPubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of Gynecology and Obstetrics, West China Second HospitalSichuan UniversityChengduChina
  2. 2.State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina

Personalised recommendations