Advertisement

Science China Life Sciences

, Volume 54, Issue 4, pp 379–385 | Cite as

Purification and characterization of a novel immunomodulatory protein from the medicinal mushroom Trametes versicolor

  • Feng Li
  • HuaAn WenEmail author
  • YongJie Zhang
  • Min Aa
  • XingZhong LiuEmail author
Open Access
Research Papers

Abstract

Bioactive proteins represent an important group of functional agents in medicinal mushrooms. Trametes versicolor (L.) Lloyd is a mushroom frequently used in traditional Chinese medicine for its anti-tumor and immunomodulatory activities. A new immunomodulatory protein from T. versicolor, named TVC, was purified by ammonium sulfate precipitation, ion-exchange chromatography and gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the purified protein revealed a single band with a molecular weight of 15.0 kD. Native polyacrylamide gel analysis revealed a band at 30 kD, indicating that TVC exists in solution as a homodimer. Isoelectric focusing showed that TVC was an acidic protein with an isoelectric point of 4.0. TVC was found to lack carbohydrate modifications (based on periodic acid/Schiff staining) and it does not agglutinate mouse red blood cells, suggesting that TVC is not a lectin-like protein. Biological activity assays demonstrated that TVC can enhance the proliferation of splenocytes, while it has no stimulatory effects on CD4+ and CD8+ T cells. TVC markedly increases the proliferation of human peripheral blood lymphocytes in a dose-dependent manner and enhances the production of both nitric oxide and tumor necrosis factor-alpha by lipopolysaccharide-induced murine macrophages. The results indicate that TVC is an immunostimulant that can boost immune response. Comparison of the N-terminal amino acid residues and mass spectrometry results with the protein database revealed no homologous proteins.

Keywords

biological activity immunomodulatory protein medicinal mushroom purification Trametes versicolor 

References

  1. 1.
    Chu K K, Ho S S, Chow A H. Coriolus versicolor: A medicinal mushroom with promising immunotherapeutic values. J Clin Pharmacol, 2002, 42: 976–984 12211223PubMedCrossRefGoogle Scholar
  2. 2.
    Ng T B. A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). Gen Pharmacol, 1998, 30: 1–4 9457474, 1:CAS:528:DyaK2sXntl2htr4%3DPubMedCrossRefGoogle Scholar
  3. 3.
    Zaidman B Z, Yassin M, Mahajna J, et al. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol, 2005, 67: 453–468 15726350, 10.1007/s00253-004-1787-z, 1:CAS:528:DC%2BD2MXkvVClurs%3DPubMedCrossRefGoogle Scholar
  4. 4.
    Wang H X, Ng T B, Ooi V E C. Lectins from mushrooms. Mycol Res, 1998, 102: 897–906 10.1017/S0953756298006200, 1:CAS:528:DyaK1cXmtFGltrg%3DCrossRefGoogle Scholar
  5. 5.
    Wang H X, Liu W K, Ng T B, et al. The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology, 1996, 31: 205–211 8861746, 10.1016/0162-3109(95)00049-6, 1:CAS:528:DyaK28XhvVKks7o%3DPubMedCrossRefGoogle Scholar
  6. 6.
    Wang H X, Gao J Q, Ng T B. A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochem Biophys Res Commun, 2000, 275: 810–816 10973803, 10.1006/bbrc.2000.3373, 1:CAS:528:DC%2BD3cXmtFGls7k%3DPubMedCrossRefGoogle Scholar
  7. 7.
    Ikekawa T, Maruyama H, Miyano T, et al. Proflamin, a new antitumor agent—preparation, physicochemical properties and antitumor-activity. Jpn J Cancer Res, 1985, 76: 142–148 3920103, 1:CAS:528:DyaL2MXhvVans7o%3DPubMedGoogle Scholar
  8. 8.
    Moradali M F, Mostafavi H, Ghods S, et al. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol, 2007, 7: 701–724 17466905, 10.1016/j.intimp.2007.01.008, 1:CAS:528:DC%2BD2sXkslKqs7o%3DPubMedCrossRefGoogle Scholar
  9. 9.
    Tanaka S, Ko K, Kino K, et al. Complete amino acid sequence of an immunomodulatory protein, Ling Zhi-8 (LZ-8). An immunomodulator from a fungus, Ganoderma lucidium, having similarity to immunoglobulin variable regions. J Biol Chem, 1989, 264: 16372–16377 2570780, 1:CAS:528:DyaK3cXit12nsbw%3DPubMedGoogle Scholar
  10. 10.
    Haak-Frendscho M, Kino K, Sone T, et al. Ling Zhi-8: A novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell Immunol, 1993, 150: 101–113 8102083, 10.1006/cimm.1993.1182PubMedCrossRefGoogle Scholar
  11. 11.
    van der Hem L G, van der Vliet J A, Bocken C F, et al. Ling Zhi-8: Studies of a new immunomodulating agent. Transplantation, 1995, 60: 438–443 7676490, 10.1097/00007890-199509000-00006PubMedCrossRefGoogle Scholar
  12. 12.
    Miyasaka N, Inoue H, Totsuka T, et al. An immunomodulatory protein, Ling Zhi-8, facilitates cellular interaction through modulation of adhesion molecules. Biochem Biophys Res Commun, 1992, 186: 385–390 1352970, 10.1016/S0006-291X(05)80819-8, 1:CAS:528:DyaK38XltVersbs%3DPubMedCrossRefGoogle Scholar
  13. 13.
    Kino K, Mizumoto K, Sone T, et al. An immunomodulating protein, Ling Zhi-8 (LZ-8) prevents insulitis in non-obese diabetic mice. Diabetologia, 1990, 33: 713–718 2073984, 10.1007/BF00400340, 1:STN:280:DyaK3M7mtVygtw%3D%3DPubMedCrossRefGoogle Scholar
  14. 14.
    Kino K, Sone T, Watanabe J, et al. Immunomodulator, LZ-8, prevents antibody production in mice. Int J Immunopharmacol, 1991, 13: 1109–1115 1814848, 10.1016/0192-0561(91)90162-Z, 1:CAS:528:DyaK38XjsVWntw%3D%3DPubMedCrossRefGoogle Scholar
  15. 15.
    Ko J L, Hsu C I, Lin R H, et al. A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur J Biochem, 1995, 228: 244–249 7705335, 10.1111/j.1432-1033.1995.tb20256.x, 1:CAS:528:DyaK2MXktFyjtL8%3DPubMedCrossRefGoogle Scholar
  16. 16.
    Hsu H C, Hsu C I, Lin R H, et al. Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochem J, 1997, 323: 557–565 9163352, 1:CAS:528:DyaK2sXivFGlsrk%3DPubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lin W H, Hung C H, Hsu C I, et al. Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J Biol Chem, 1997, 272: 20044–20048 9242675, 10.1074/jbc.272.32.20044, 1:CAS:528:DyaK2sXltlGkt7Y%3DPubMedCrossRefGoogle Scholar
  18. 18.
    Sheu F, Chien P J, Chien A L, et al. Isolation and characterization of an immunomodulatory protein (APP), from the Jew’s Ear mushroom Auricularia polytricha. Food Chem, 2004, 87: 593–600 10.1016/j.foodchem.2004.01.015, 1:CAS:528:DC%2BD2cXkslKmsb0%3DCrossRefGoogle Scholar
  19. 19.
    Sheu F, Chien P J, Wang H K, et al. New protein PCiP from edible golden oyster mushroom (Pleurotus citrinopileatus) activating murine macrophages and splenocytes. J Sci Food Agri, 2007, 87: 1550–1558 10.1002/jsfa.2887, 1:CAS:528:DC%2BD2sXmt1OltbY%3DCrossRefGoogle Scholar
  20. 20.
    Strong D M, Ahmed A A, Thurman G B, et al. In vitro stimulation of murine spleen cells using a microculture system and a multiple automated sample harvester. J Immunol Methods, 1973, 2: 279–291 4695475, 10.1016/0022-1759(73)90054-9, 1:STN:280:DyaE3s7ltFejtQ%3D%3DPubMedCrossRefGoogle Scholar
  21. 21.
    Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680–685 5432063, 10.1038/227680a0, 1:CAS:528:DC%2BD3MXlsFags7s%3DPubMedCrossRefGoogle Scholar
  22. 22.
    Zacharius R M, Zell T E, Morrison J H, et al. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem, 1969, 30: 148–152 4183001, 10.1016/0003-2697(69)90383-2, 1:CAS:528:DyaF1MXksVKmtL8%3DPubMedCrossRefGoogle Scholar
  23. 23.
    Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem, 1996, 68: 850–858 8779443, 10.1021/ac950914h, 1:CAS:528:DyaK28XntlygtA%3D%3DPubMedCrossRefGoogle Scholar
  24. 24.
    Wang H X, Ng T B, Liu W K, et al. Polysaccharide-peptide complexes from the cultured mycelia of the mushroom Coriolus versi color and their culture medium activate mouse lymphocytes and macrophages. Int J Biochem Cell B, 1996, 28: 601–607 10.1016/1357-2725(95)00157-3, 1:CAS:528:DyaK28Xjs1Cqurk%3DCrossRefGoogle Scholar
  25. 25.
    Wang H X, Liu W K, Ng T B, et al. Immunomodulatory and antitumor activities of a polysaccharide-peptide complex from a mycelial culture of Tricholoma sp., a local edible mushroom. Life Sci, 1995, 57: 269–281 7596231, 10.1016/0024-3205(95)00270-G, 1:CAS:528:DyaK2MXmt1Witbg%3DPubMedCrossRefGoogle Scholar
  26. 26.
    Wong C K, Tse P S, Wong E L, et al. Immunomodulatory effects of yun zhi and danshen capsules in health subjects—a randomized, double-blind, placebo-controlled, crossover study. Int Immunopharmacol, 2004, 4: 201–211 14996412, 10.1016/j.intimp.2003.12.003, 1:CAS:528:DC%2BD2cXhslSktrs%3DPubMedCrossRefGoogle Scholar
  27. 27.
    Lau C B, Ho C Y, Kim C F, et al. Cytotoxic activities of Coriolus versicolor (Yunzhi) extract on human leukemia and lymphoma cells by induction of apoptosis. Life Sci, 2004, 75: 797–808 15183073, 10.1016/j.lfs.2004.04.001, 1:CAS:528:DC%2BD2cXks1Cis7s%3DPubMedCrossRefGoogle Scholar
  28. 28.
    Kino K, Yamashita A, Yamaoka K, et al. Isolation and characterization of a new immunomodulatory protein, Ling Zhi-8 (LZ-8), from Ganoderma lucidium. J Biol Chem, 1989, 264: 472–478 2909532, 1:CAS:528:DyaL1MXltV2jtw%3D%3DPubMedGoogle Scholar
  29. 29.
    Tsukagoshi S, Hashimoto Y, Fujii G, et al. Krestin (PSK). Cancer Treat Rev, 1984, 11: 131–155 6238674, 10.1016/0305-7372(84)90005-7, 1:STN:280:DyaL2M%2FkvVyitA%3D%3DPubMedCrossRefGoogle Scholar
  30. 30.
    Carreras M C, Poderoso J J, Cadenas E, et al. Measurement of nitric oxide and hydrogen peroxide production from human neutrophils. Methods Enzymol, 1996, 269: 65–75 8791638, 10.1016/S0076-6879(96)69010-7, 1:CAS:528:DyaK28XmvF2qs7k%3DPubMedCrossRefGoogle Scholar
  31. 31.
    Pang Z J, Zhou M, Chen Y, et al. A protein-bound polysaccharide synergistic with lipopolysaccharide induces nitric oxide release and antioxidant enzyme activities in mouse peritoneal macrophages. Am J Chin Med, 1998, 26: 133–141 9799965, 10.1142/S0192415X9800018X, 1:STN:280:DyaK1M%2Fhs1entQ%3D%3DPubMedCrossRefGoogle Scholar
  32. 32.
    Aggarwal B B, Natarajan K. Tumor necrosis factors: Developments during the last decade. Eur Cytokine Netw, 1996, 7: 93–124 8688493, 1:CAS:528:DyaK28XjtF2isr8%3DPubMedGoogle Scholar
  33. 33.
    Beutler B, Du X, Poltorak A. Identification of Toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: Genetic and evolutionary studies. J Endotoxin Res, 2001, 7: 277–280 11717581, 1:CAS:528:DC%2BD3MXovVGjtL0%3DPubMedCrossRefGoogle Scholar
  34. 34.
    Yang Q, Zhu P, Wang Z, et al. Toll-like receptor 4, a novel signal transducer for lipopolysaccharide. Chin J Traumatol, 2002, 5: 55–58 11835760, 1:CAS:528:DC%2BD38Xjt1ynsbg%3DPubMedGoogle Scholar
  35. 35.
    Goldstein D R. Toll-like receptors and other links between innate and acquired alloimmunity. Curr Opin Immunol, 2004, 16: 538–544 15341996, 10.1016/j.coi.2004.08.001, 1:CAS:528:DC%2BD2cXntleksL4%3DPubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

This article is published under license to BioMed Central Ltd.Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Key Laboratory of Systematic Mycology and Lichenology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Life SciencesShanxi UniversityTaiyuanChina

Personalised recommendations