Science China Life Sciences

, Volume 53, Issue 10, pp 1163–1169

Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota

Cover Article

Abstract

Differences in rates of nucleotide or amino acid substitutions among major groups of organisms are repeatedly found and well documented. A growing body of evidence suggests a link between the rate of neutral molecular change within populations and the evolution of species diversity. More than 98% of terrestrial fungi belong to the phyla Ascomycota or Basidiomycota. The former is considerably richer in number of species than the latter. We obtained DNA sequences of 21 protein-coding genes from the lichenized fungus Rhizoplaca chrysoleuca and used them together with sequences from GenBank for subsequent analyses. Three datasets were used to test rate discrepancies between Ascomycota and Basidiomycota and that within Ascomycota: (i) 13 taxa including 105 protein-coding genes, (ii) nine taxa including 21 protein-coding genes, and (iii) nuclear LSU rDNA of 299 fungal species. Based on analyses of the 105 protein-coding genes and nuclear LSU rDNA datasets, we found that the evolutionary rate was higher in Ascomycota than in Basidiomycota. The differences in substitution rates between Ascomycota and Basidiomycota were significant. Within Ascomycota, the species-rich Sordariomycetes has the fastest evolutionary rate, while Leotiomycetes has the slowest. Our results indicate that the main contribution to the higher substitution rates in Ascomycota does not come from mutualism, ecological conditions, sterility, metabolic rate or shorter generation time, but is possibly caused by the founder effect. This is another example of the correlation between species number and evolutionary rates, which is consistent with the hypothesis that the founder effect is responsible for accelerated substitution rates in diverse clades.

Keywords

evolutionary rate amino acid substitution nucleotide substitution fungal evolution species diversity founder effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11427_2010_4063_MOESM1_ESM.pdf (621 kb)
Supplementary material, approximately (620 KB).

References

  1. 1.
    Resh V H, Cardé R T. Encyclopedia of Insects. San Diego: Academic Press, 2003. 209–229Google Scholar
  2. 2.
    Hughes C, Eastwood R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA, 2006, 103: 10334–10339, 1:CAS:528:DC%2BD28XntlOhsr8%3D, 10.1073/pnas.0601928103, 16801546PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kristensen N P. Phylogeny of endopterygote insects, the most successful lineage of living organisms. Eur J Entomol, 1999, 96: 237–253Google Scholar
  4. 4.
    Dodd M E, Silvertown J, Chase M W. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution, 1999, 53: 732–744, 10.2307/2640713CrossRefGoogle Scholar
  5. 5.
    Bond J E, Opell B D. Testing adaptive radiation and key innovation hypotheses in spiders. Evolution, 1998, 52: 403–414, 10.2307/2411077CrossRefGoogle Scholar
  6. 6.
    Arbogast B S, Edwards S V, Wakeley J, et al. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu Rev Ecol Syst, 2002, 33: 707–740, 10.1146/annurev.ecolsys.33.010802.150500CrossRefGoogle Scholar
  7. 7.
    Britten R J. Rates of DNA-sequence evolution differ between taxonomic groups. Science, 1986, 231: 1393–1398, 1:CAS:528:DyaL28XhsVCitLw%3D, 10.1126/science.3082006, 3082006PubMedCrossRefGoogle Scholar
  8. 8.
    Bromham L, Penny D. The modern molecular clock. Nat Rev Genet, 2003, 4: 216–224, 1:CAS:528:DC%2BD3sXhsFWqt7w%3D, 10.1038/nrg1020, 12610526PubMedCrossRefGoogle Scholar
  9. 9.
    Woolfit M, Bromham L. Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. Mol Biol Evol, 2003, 20: 1545–1555, 1:CAS:528:DC%2BD3sXntlantbg%3D, 10.1093/molbev/msg167, 12832648PubMedCrossRefGoogle Scholar
  10. 10.
    Langley C H, Fitch W M. An examination of the constancy of the rate of molecular evolution. J Mol Evol, 1974, 3: 161–167, 1:CAS:528:DyaE2cXltlWku7c%3D, 10.1007/BF01797451, 4368400PubMedCrossRefGoogle Scholar
  11. 11.
    Lutzoni F, Pagel M. Accelerated evolution as a consequence of transitions to mutualism. Proc Natl Acad Sci USA, 1997, 94: 11422–11427, 1:CAS:528:DyaK2sXmslentrk%3D, 10.1073/pnas.94.21.11422, 11038586PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Margoliash E. Primary structure and evolution of cytochrome c. Proc Natl Acad Sci USA, 1963, 50: 672–679, 1:CAS:528:DyaF2cXjt1Sqtg%3D%3D, 10.1073/pnas.50.4.672, 14077496PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bryson V, Vogel H. Evolving Genes and Proteins. New York: Academic Press, 1965. 97–166Google Scholar
  14. 14.
    Fontanillas E, Welch J J, Thomas J A, et al. The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla. BMC Evol Biol, 2007, 7: 95, 10.1186/1471-2148-7-95, 17592650PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Mooers A O, Harvey P H. Metabolic rate, generation time, and the rate of molecular evolution in birds. Mol Phylogenet Evol, 1994, 3: 344–350, 1:CAS:528:DyaK2MXjsVWksLk%3D, 10.1006/mpev.1994.1040, 7697191PubMedCrossRefGoogle Scholar
  16. 16.
    Bromham L. Molecular clocks in reptiles: life history influences rate of molecular evolution. Mol Biol Evol, 2002, 19: 302–309, 1:CAS:528:DC%2BD38XitFSnsLo%3D, 11861889PubMedCrossRefGoogle Scholar
  17. 17.
    Bromham L, Rambaut A, Harvey P H. Determinants of rate variation in mammalian DNA sequence evolution. J Mol Evol, 1996, 43: 610–621, 1:CAS:528:DyaK2sXislKjtg%3D%3D, 10.1007/BF02202109, 8995058PubMedCrossRefGoogle Scholar
  18. 18.
    Thomas J A, Welch J J, Woolfit M, et al. There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proc Natl Acad Sci USA, 2006, 103: 7366–7371, 1:CAS:528:DC%2BD28XkslOrsL0%3D, 10.1073/pnas.0510251103, 16651532PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Martin A P, Palumbi S R. Body size, metabolic-Rate, generation time, and the molecular clock. Proc Natl Acad Sci USA, 1993, 90: 4087–4091, 1:CAS:528:DyaK3sXkt1ehs7o%3D, 10.1073/pnas.90.9.4087, 8483925PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ohta T. An examination of the generation-time effect on molecular evolution. Proc Natl Acad Sci USA, 1993, 90: 10676–10680, 1:CAS:528:DyaK2cXisF2gtg%3D%3D, 10.1073/pnas.90.22.10676, 8248159PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gu X, Li W H. Higher amino acid substitution in rodents than in humans. Mol Phylogenet Evol, 1992, 1: 211–214, 1:CAS:528:DyaK3sXisFajt7c%3D, 10.1016/1055-7903(92)90017-B, 1342937PubMedCrossRefGoogle Scholar
  22. 22.
    Bousquet J, Strauss S H, Doerksen A H, et al. Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc Natl Acad Sci USA, 1992, 89: 7844–7848, 1:CAS:528:DyaK3sXksVahurg%3D, 10.1073/pnas.89.16.7844, 1502205PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Conti E, Fischbach A, Sytsma K J. Tribal relationships in Onagraceae: implications from rbcL sequence data. Ann Mo Bot Gard, 1993, 80: 672–685, 10.2307/2399853CrossRefGoogle Scholar
  24. 24.
    Laroche J, Li P, Maggia L, et al. Molecular evolution of angiosperm mitochondrial introns and exons. Proc Natl Acad Sci USA, 1997, 94: 5722–5727, 1:CAS:528:DyaK2sXjsFKqs74%3D, 10.1073/pnas.94.11.5722, 9159140PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kay K M, Whittall J B, Hodges S A. A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol Biol, 2006, 6: 36, 10.1186/1471-2148-6-36, 16638138PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Zoller S, Lutzoni F. Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Mol Phylogenet Evol, 2003, 29: 629–640, 1:CAS:528:DC%2BD3sXovVWnu78%3D, 10.1016/S1055-7903(03)00215-X, 14615198PubMedCrossRefGoogle Scholar
  27. 27.
    Lumbsch H T, Hipp A L, Divakar P K, et al. Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). BMC Evol Biol, 2008, 8: 257, 10.1186/1471-2148-8-257, 18808710PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bromham L, Cardillo M. Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. J Evolution Biol, 2003, 16: 200–207, 1:CAS:528:DC%2BD3sXivVyntLY%3D, 10.1046/j.1420-9101.2003.00526.xCrossRefGoogle Scholar
  29. 29.
    Barraclough T G, Savolainen V. Evolutionary rates and species diversity in flowering plants. Evolution, 2001, 55: 677–683, 1:CAS:528:DC%2BD3MXktleqtL0%3D, 10.1554/0014-3820(2001)055[0677:ERASDI]2.0.CO;2, 11392385PubMedCrossRefGoogle Scholar
  30. 30.
    Webster A J, Payne R J H, Pagel M. Molecular phylogenies link rates of evolution and speciation. Science, 2003, 301: 478–478, 1:CAS:528:DC%2BD3sXlvVGkt7g%3D, 10.1126/science.1083202, 12881561PubMedCrossRefGoogle Scholar
  31. 31.
    Jobson R W, Albert V A. Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. Cladistics, 2002, 18: 127–136Google Scholar
  32. 32.
    Mindell D P, Sites J W, Graur D. Speciational evolution: a phylogenetic test with allozymes in Sceloporus (Reptilia). Cladistics, 1989, 5: 49–61, 10.1111/j.1096-0031.1989.tb00482.xCrossRefGoogle Scholar
  33. 33.
    Mindell D P, Thacker C E. Rates of molecular evolution: phylogenetic issues and applications. Annu Rev Ecol Syst, 1996, 27: 279–303, 10.1146/annurev.ecolsys.27.1.279CrossRefGoogle Scholar
  34. 34.
    Barraclough T G, Harvey P H, Nee S. Rate of rbcL gene sequence evolution and species diversification in flowering plants (angiosperms). P Roy Soc Lond B Bio, 1996, 263: 589–591, 10.1098/rspb.1996.0088CrossRefGoogle Scholar
  35. 35.
    Mayr E. Animal Species and Evolution. Cambridge, MA: Harvard University Press, 1963. 1–797CrossRefGoogle Scholar
  36. 36.
    Carson H L, Templeton A R. Genetic revolution in relation to speciation: the founding of new populations. Annu Rev Ecol Syst, 1984, 15: 97–131, 10.1146/annurev.es.15.110184.000525CrossRefGoogle Scholar
  37. 37.
    Harrison R G. Molecular changes at speciation. Annu Rev Ecol Syst, 1991, 22: 281–308, 10.1146/annurev.es.22.110191.001433CrossRefGoogle Scholar
  38. 38.
    Coyne J A. Genetics and speciation. Nature, 1992, 355: 511–515, 1:STN:280:DyaK387lvVSnsQ%3D%3D, 10.1038/355511a0, 1741030PubMedCrossRefGoogle Scholar
  39. 39.
    Gould S J, Eldredge N. Punctuated equilibrium comes of age. Nature, 1993, 366: 223–227, 1:STN:280:DyaK2c%2FltVWktg%3D%3D, 10.1038/366223a0, 8232582PubMedCrossRefGoogle Scholar
  40. 40.
    Eldredge N, Gould S J. Punctuated equilibrium prevails. Nature, 1988, 332: 211–212, 10.1038/332211b0CrossRefGoogle Scholar
  41. 41.
    Webster A J, Payne R J H, Pagel M. Molecular phylogenies link rates of evolution and speciation. Science, 2003, 301: 478, 1:CAS:528:DC%2BD3sXlvVGkt7g%3D, 10.1126/science.1083202, 12881561PubMedCrossRefGoogle Scholar
  42. 42.
    Wainright P O, Hinkle G, Sogin M L, et al. Monophyletic origins of the metazoa: an evolutionary link with fungi. Science, 1993, 260: 340–342, 1:STN:280:DyaK3s3islSnsw%3D%3D, 10.1126/science.8469985, 8469985PubMedCrossRefGoogle Scholar
  43. 43.
    Alexopoulos C J, Mims C W, Blackwell M. Introductory Mycology. 4th ed. New York: John Wiley & Sons, 1996. 1–880Google Scholar
  44. 44.
    Hibbett D S, Binder M, Bischoff J F, et al. A higher-level phylogenetic classification of the fungi. Mycol Res, 2007, 111: 509–547, 10.1016/j.mycres.2007.03.004, 17572334PubMedCrossRefGoogle Scholar
  45. 45.
    Kirk P M, Cannon P F, David J C, et al. Ainsworth & Bisby’s Dictionary of the Fungi. 10th ed. Wallingford (Oxon): CAB International, 2008. 1–771Google Scholar
  46. 46.
    Lutzoni F, Kauff F, Cox C, et al. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot, 2004, 91: 1446–1480, 10.3732/ajb.91.10.1446PubMedCrossRefGoogle Scholar
  47. 47.
    Hawksworth D L. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res, 1991, 95: 641–655, 10.1016/S0953-7562(09)80810-1CrossRefGoogle Scholar
  48. 48.
    Hawksworth D L. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res, 2001, 105: 1422–1432, 10.1017/S0953756201004725CrossRefGoogle Scholar
  49. 49.
    Spatafora J W, Sung G H, Johnson D, et al. A five-gene phylogeny of Pezizomycotina. Mycologia, 2006, 98: 1018–1028, 1:CAS:528:DC%2BD2sXltlOgu7s%3D, 10.3852/mycologia.98.6.1018, 17486977PubMedCrossRefGoogle Scholar
  50. 50.
    Miadlikowska J, Kauff F, Hofstetter V, et al. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia, 2006, 98: 1088–1103, 1:CAS:528:DC%2BD2sXltlOgu7c%3D, 10.3852/mycologia.98.6.1088, 17486983PubMedCrossRefGoogle Scholar
  51. 51.
    Wedin M, Wiklund E, Crewe A, et al. Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. Mycol Res, 2005, 109: 159–172, 1:CAS:528:DC%2BD2MXhs1Ghsr0%3D, 10.1017/S0953756204002102, 15839100PubMedCrossRefGoogle Scholar
  52. 52.
    Persoh D, Beck A, Rambold G. The distribution of ascus types and photobiontal selection in Lecanoromycetes (Ascomycota) against the background of a revised SSU nrDNA phylogeny. Mycol Prog, 2004, 3: 103–121, 10.1007/s11557-006-0081-0CrossRefGoogle Scholar
  53. 53.
    James T Y, Kauff F, Schoch C, et al. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature, 2006, 443: 818–822, 1:CAS:528:DC%2BD28XhtVyktbjN, 10.1038/nature05110, 17051209PubMedCrossRefGoogle Scholar
  54. 54.
    Lumbsch H T, Schmitt I, Palice Z, et al. Supraordinal phylogenetic relationships of Lecanoromycetes based on a Bayesian analysis of combined nuclear and mitochondrial sequences. Mol Phylogenet Evol, 2004, 31: 822–832, 1:CAS:528:DC%2BD2cXjs1als7w%3D, 10.1016/j.ympev.2003.11.001, 15120381PubMedCrossRefGoogle Scholar
  55. 55.
    Zhou Q M, Guo S Y, Huang M R, et al. A study of the genetic variability of Rhizoplaca chrysoleuca using DNA sequences and secondary metabolic substances. Mycologia, 2006, 98: 57–67, 1:CAS:528:DC%2BD28Xms1OmsL8%3D, 10.3852/mycologia.98.1.57, 16800305PubMedCrossRefGoogle Scholar
  56. 56.
    Thompson J D, Higgins D G, Gibson T J. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22: 4673–4680, 1:CAS:528:DyaK2MXitlSgu74%3D, 10.1093/nar/22.22.4673, 7984417PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599, 1:CAS:528:DC%2BD2sXpsVGrsL8%3D, 10.1093/molbev/msm092, 17488738PubMedCrossRefGoogle Scholar
  58. 58.
    Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci, 1997, 13: 555–556, 1:CAS:528:DyaK2sXntlGnu7s%3D, 9367129PubMedGoogle Scholar
  59. 59.
    Felsenstein J. Confidence-limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39: 783–791, 10.2307/2408678CrossRefGoogle Scholar
  60. 60.
    Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA, 2004, 101: 11030–11035, 1:CAS:528:DC%2BD2cXmsVCmt7s%3D, 10.1073/pnas.0404206101, 15258291PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bryson V, Vogel. H. Evolving Genes and Proteins. New York: Academic Press, 1965. 97–166Google Scholar
  62. 62.
    Lumbsch H T, Huhndorf S M. Whatever happened to the Pyrenomycetes and Loculoascomycetes? Mycol Res, 2007, 111: 1064–1074, 10.1016/j.mycres.2007.04.004, 18029164PubMedCrossRefGoogle Scholar
  63. 63.
    Moran N A. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA, 1996, 93: 2873–2878, 1:CAS:528:DyaK28XitVCit78%3D, 10.1073/pnas.93.7.2873, 8610134PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rand D M. Thermal habit, metabolic-rate and the evolution of mitochondrial DNA. Trends Ecol Evol, 1994, 9: 125–131, 10.1016/0169-5347(94)90176-7PubMedCrossRefGoogle Scholar
  65. 65.
    Kohne D E. Evolution of higher-organism DNA. Q Rev Biophys, 1970, 3: 327–375, 1:CAS:528:DyaE3MXhtVU%3D, 10.1017/S0033583500004765, 4989149PubMedCrossRefGoogle Scholar
  66. 66.
    Lynch M, Blanchard J L. Deleterious mutation accumulation in organelle genomes. Genetica, 1998, 103: 29–39, 10.1023/A:1017022522486CrossRefGoogle Scholar
  67. 67.
    Taylor J W. Making the Deuteromycota redundant: a practical integration of mitosporic fungi. Can J Bot, 1995, 73: S754–S759, 10.1139/b95-319CrossRefGoogle Scholar
  68. 68.
    Kavanagh K. Fungi: Biology and Applications. New York: John Wiley & Sons, 2005. 1–239CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory of Systematic Mycology & Lichenology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Beijing Museum of Natural HistoryBeijingChina
  4. 4.Department of BotanyThe Field MuseumChicagoUSA

Personalised recommendations