Science China Life Sciences

, Volume 53, Issue 9, pp 1065–1072 | Cite as

A genome-wide association analysis implicates SOX6 as a candidate gene for wrist bone mass

  • LiJun Tan
  • Rong Liu
  • ShuFeng Lei
  • Rong Pan
  • TieLin Yang
  • Han Yan
  • YuFang Pei
  • Fang Yang
  • Feng Zhang
  • Feng Pan
  • YinPin Zhang
  • HongGang Hu
  • Shawn Levy
  • HongWen Deng
Research Papers

Abstract

Osteoporosis is a highly heritable common bone disease leading to fractures that severely impair the life quality of patients. Wrist fractures caused by osteoporosis are largely due to the scarcity of wrist bone mass. Here we report the results of a genome-wide association study (GWAS) of wrist bone mineral density (BMD). We examined ∼500000 SNP markers in 1000 unrelated homogeneous Caucasian subjects and found a novel allelic association with wrist BMD at rs11023787 in the SOX6 (SRY (sex determining region Y)-box 6) gene (P=9.00×10−5). Subjects carrying the C allele of rs11023787 in SOX6 had significantly higher mean wrist BMD values than those with the T allele (0.485:0.462 g cm−2 for C allele vs. T allele carriers). For validation, we performed SOX6 association for BMD in an independent Chinese sample and found that SNP rs11023787 was significantly associated with wrist BMD in the Chinese sample (P=6.41×10−3). Meta-analyses of the GWAS scan and the replication studies yielded P-values of 5.20×10−6 for rs11023787. Results of this study, together with the functional relevance of SOX6 in cartilage formation, support the SOX6 gene as an important gene for BMD variation.

Keywords

osteoporosis GWAS SOX6 SNPs wrist BMD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ray N F, Chan J K, Thamer M, et al. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res, 1997, 12: 24–35 1:STN:280:DyaK2szot1Oguw%3D%3D, 10.1359/jbmr.1997.12.1.24, 9240722PubMedCrossRefGoogle Scholar
  2. 2.
    Public Health Service Office of the Surgeon General Public Health Service Office of the Surgeon General. 2004Google Scholar
  3. 3.
    Ioannidis G, Gordon M, Adachi J D. Quality of life in osteoporosis. Nurs Clin North Am, 2001, 36: 481–489 1:STN:280:DC%2BD3MvptFSgtA%3D%3D, 11532662PubMedGoogle Scholar
  4. 4.
    Schousboe J T, Fink H A, Taylor B C, et al. Association between self-reported prior wrist fractures and risk of subsequent hip and radiographic vertebral fractures in older women: a prospective study. J Bone Miner Res, 2005, 20: 100–106 10.1359/JBMR.041025, 15619675PubMedCrossRefGoogle Scholar
  5. 5.
    Niu T, Rosen C J. The insulin-like growth factor-I gene and osteoporosis: a critical appraisal. Gene, 2005, 361: 38–56 1:CAS:528:DC%2BD2MXhtFGhsbjJ, 10.1016/j.gene.2005.07.016, 16183214PubMedCrossRefGoogle Scholar
  6. 6.
    Deng H W, Xu F H, Huang Q Y, et al. A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait loci for osteoporosis. J Clin Endocrinol Metab, 2002, 87: 5151–5159 1:CAS:528:DC%2BD38Xos1ynt7s%3D, 10.1210/jc.2002-020474, 12414886PubMedCrossRefGoogle Scholar
  7. 7.
    Shen H, Zhang Y Y, Long J R, et al. A genome-wide linkage scan for bone mineral density in an extended sample: evidence for linkage on 11q23 and Xq27. J Med Genet, 2004, 41: 743–751 1:CAS:528:DC%2BD2cXpsl2gsbk%3D, 10.1136/jmg.2004.020396, 15466007PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ralston S H, Galwey N, MacKay I, et al. Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum Mol Genet, 2005, 14: 943–951 1:CAS:528:DC%2BD2MXis1yjt7Y%3D, 10.1093/hmg/ddi088, 15746152PubMedCrossRefGoogle Scholar
  9. 9.
    Peacock M, Koller D L, Fishburn T, et al. Sex-specific and non-sex-specific quantitative trait loci contribute to normal variation in bone mineral density in men. J Clin Endocrinol Metab, 2005, 90: 3060–3066 1:CAS:528:DC%2BD2MXkt1Wgurg%3D, 10.1210/jc.2004-2143, 15741260PubMedCrossRefGoogle Scholar
  10. 10.
    Shen H, Liu Y, Liu P, et al. Nonreplication in genetic studies of complex diseases-lessons learned from studies of osteoporosis and tentative remedies. J Bone Miner Res, 2005, 20: 365–376 1:CAS:528:DC%2BD2MXis1Kntbs%3D, 10.1359/JBMR.041129, 15746981PubMedCrossRefGoogle Scholar
  11. 11.
    Thakkinstian A, D’Este C, Eisman J, et al. Meta-analysis of molecular association studies: vitamin D receptor gene polymorphisms and BMD as a case study. J Bone Miner Res, 2004, 19: 419–428 1:CAS:528:DC%2BD2cXisFCrsb0%3D, 10.1359/JBMR.0301265, 15040830PubMedCrossRefGoogle Scholar
  12. 12.
    Macdonald H M, McGuigan F E, Stewart A, et al. Large-scale population-based study shows no evidence of association between common polymorphism of the VDR gene and BMD in British women. J Bone Miner Res, 2006, 21: 151–162 1:CAS:528:DC%2BD28Xpt1SmsA%3D%3D, 10.1359/JBMR.050906, 16355284PubMedCrossRefGoogle Scholar
  13. 13.
    Ralston S H, Uitterlinden A G, Brandi M L, et al. Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS, 2006, 14: 943–951Google Scholar
  14. 14.
    Hirschhorn J N, Daly M J. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet, 2005, 6: 95–108 1:CAS:528:DC%2BD2MXhtFyjsr8%3D, 10.1038/nrg1521, 15716906PubMedCrossRefGoogle Scholar
  15. 15.
    Ahn S J, Costa J, Emanuel J R. PicoGreen quantitation of DNA: effective evaluation of samples pre- or post-PCR. Nucleic Acids Res, 1996, 24: 2623–2625 1:CAS:528:DyaK28XksVyjt7o%3D, 10.1093/nar/24.13.2623, 8692708PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Singer V L, Jones L J, Yue S T, et al. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal Biochem, 1997, 249: 228–238 1:CAS:528:DyaK2sXktF2rsbo%3D, 10.1006/abio.1997.2177, 9212875PubMedCrossRefGoogle Scholar
  17. 17.
    Di X, Matsuzaki H, Webster T A, et al. Dynamic model based algorithms for screening and genotyping over 100 K SNPs on oligonucleotide microarrays. Bioinformatics, 2005, 21: 1958–1963 1:CAS:528:DC%2BD2MXjsl2nsLc%3D, 10.1093/bioinformatics/bti275, 15657097PubMedCrossRefGoogle Scholar
  18. 18.
    Rabbee N, Speed T P. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics, 2005, 22: 7–12 10.1093/bioinformatics/bti741, 16267090PubMedCrossRefGoogle Scholar
  19. 19.
    Zaykin D V, Westfall P H, Young S S, et al. Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered, 2002, 53: 79–91 10.1159/000057986, 12037407PubMedCrossRefGoogle Scholar
  20. 20.
    Weir B. Genetic Data Analysis III. Sunderland: Sinauer Associates, 2007Google Scholar
  21. 21.
    Price A L, Patterson N J, Plenge R M, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006, 38: 904–909 1:CAS:528:DC%2BD28XnsVCgsrg%3D, 10.1038/ng1847, 16862161PubMedCrossRefGoogle Scholar
  22. 22.
    Barrett J C, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21: 263–265 1:CAS:528:DC%2BD2MXkt1WitQ%3D%3D, 10.1093/bioinformatics/bth457, 15297300PubMedCrossRefGoogle Scholar
  23. 23.
    Yuan H Y, Chiou J J, Tseng W H, et al. FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res, 2006, 34: W635–W641 1:CAS:528:DC%2BD28Xps1yhs7c%3D, 10.1093/nar/gkl236, 16845089PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Whitlock M C. Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J Evol Biol, 2005, 18: 1368–1373 1:STN:280:DC%2BD2Mvmsl2hug%3D%3D, 10.1111/j.1420-9101.2005.00917.x, 16135132PubMedCrossRefGoogle Scholar
  25. 25.
    Loannidis J P, Ng M Y, Sham P C, et al. Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J Bone Miner Res, 2007, 22: 173–83 10.1359/jbmr.060806CrossRefGoogle Scholar
  26. 26.
    Vidal C, Galea R, Brincat M, et al. Linkage to chromosome 11p12 in two Maltese families with a highly penetrant form of osteoporosis. Eur J Hum Genet, 2007, 15: 800–809 1:CAS:528:DC%2BD2sXmslSrsbk%3D, 10.1038/sj.ejhg.5201814, 17377523PubMedCrossRefGoogle Scholar
  27. 27.
    Pevny L H, Lovell-Badge R. Sox genes find their feet. Curr Opin Genet Dev, 1997, 7: 338–344 1:CAS:528:DyaK2sXksVyntr8%3D, 10.1016/S0959-437X(97)80147-5, 9229109PubMedCrossRefGoogle Scholar
  28. 28.
    Lefebvre V, Li P, de C B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J, 1998, 17: 5718–5733 1:CAS:528:DyaK1cXmvVyjsLs%3D, 10.1093/emboj/17.19.5718, 9755172PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    De C B, Lefebvre V, Behringer R R, et al. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol, 2000, 19: 389–394 10.1016/S0945-053X(00)00094-9CrossRefGoogle Scholar
  30. 30.
    Lefebvre V, Behringer R R, {fnde} C B. L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage, 2001, 9: S69–S75 10.1053/joca.2001.0447, 11680692PubMedCrossRefGoogle Scholar
  31. 31.
    Uusitalo H, Hiltunen A, Ahonen M, et al. Accelerated up-regulation of L-Sox5, Sox6, and Sox9 by BMP-2 gene transfer during murine fracture healing. J Bone Miner Res, 2001, 16: 1837–1845 1:CAS:528:DC%2BD3MXnsVKqtL8%3D, 10.1359/jbmr.2001.16.10.1837, 11585348PubMedCrossRefGoogle Scholar
  32. 32.
    Smits P, Li P, Mandel J, et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell, 2001, 1: 277–290 1:CAS:528:DC%2BD3MXntVGrsLs%3D, 10.1016/S1534-5807(01)00003-X, 11702786PubMedCrossRefGoogle Scholar
  33. 33.
    Woods A, Wang G, Dupuis H, et al. Rac1 signaling stimulates N-cadherin expression, mesenchymal condensation and chondrogenesis. J Biol Chem, 2007, 282: 23500–23508 1:CAS:528:DC%2BD2sXosVyrtrY%3D, 10.1074/jbc.M700680200, 17573353PubMedCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • LiJun Tan
    • 1
    • 2
  • Rong Liu
    • 1
  • ShuFeng Lei
    • 1
    • 2
  • Rong Pan
    • 1
  • TieLin Yang
    • 3
  • Han Yan
    • 3
  • YuFang Pei
    • 3
  • Fang Yang
    • 1
  • Feng Zhang
    • 3
  • Feng Pan
    • 3
  • YinPin Zhang
    • 3
  • HongGang Hu
    • 4
  • Shawn Levy
    • 5
  • HongWen Deng
    • 1
    • 2
    • 4
  1. 1.Laboratory of Molecular and Statistical Genetics, College of Life SciencesHunan Normal UniversityChangshaChina
  2. 2.Departments of Orthopedic Surgery and Basic Medical SciencesUniversity of Missouri-Kansas CityKansas CityUSA
  3. 3.Institute of Molecular Genetics, School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anChina
  4. 4.College of Life Sciences and BioengineeringBeijing Jiaotong UniversityBeijingChina
  5. 5.Vanderbilt Microarray Shared ResourceVanderbilt UniversityNashvilleUSA

Personalised recommendations