Science China Life Sciences

, Volume 53, Issue 8, pp 1025–1030 | Cite as

DNA barcoding, phylogenetic relationships and speciation of snappers (genus Lutjanus)

  • ZhongDuo Wang
  • YuSong Guo
  • Wei Tan
  • Lu Li
  • EnPu Tang
  • ChuWu LiuEmail author
  • Yun Liu
Research Papers


The phylogenetic relationships of 13 snapper species from the South China Sea have been established using the combined DNA sequences of three full-length mitochondrial genes (COI, COII and CYTB) and two partial nuclear genes (RAG1, RAG2). The 13 species (genus Lutjanus) were selected after DNA barcoding 72 individuals, representing 20 species. Our study suggests that although DNA barcoding aims to develop species identification systems, it may also be useful in the construction of phylogenies by aiding the selection of taxa. Combined mitochondrial and nuclear gene data has an advantage over an individual dataset because of its higher resolving power.


phylogenetic relationship Lutjanus speciation DNA barcoding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Russ G R, Alcala A C. Effects of intense fishing pressure on an assemblage of coral reef fishes. Mar Ecol Prog Ser, 1989, 56:13–27, 10.3354/meps056013CrossRefGoogle Scholar
  2. 2.
    Marko P B, Lee S C, Rice A M, et al. Fisheries: Mislabelling of a depleted reef fish. Nature, 2004, 430:309–310, 1:CAS:528:DC%2BD2cXls1eqsro%3D, 10.1038/430309b, 15254528PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang J, Huang L, Huo H. Larval identification of Lutjanus Bloch in Nansha coral reefs by AFLP molecular method. J Exp Mar Biol Ecol, 2004, 298:3–20, 1:CAS:528:DC%2BD3sXpvF2rt7Y%3D, 10.1016/S0022-0981(03)00341-1CrossRefGoogle Scholar
  4. 4.
    Chen G H, Yin S, Lei C, et al. Artificial reproduction and rearing of snapper hybrids (Lutjanus erythropterus×L. sebae). Fisheries Sci, 2006, 25, 1–4Google Scholar
  5. 5.
    Domeier M L, Clarke M E. A laboratory produced hybrid between Lutjanus synagris and Ocyurus chrysurus and a probable hybrid between L. Griseus and O. Chrysurus (Perciformes: Lutjanidae). B Mar Sci, 1992, 50:501–507Google Scholar
  6. 6.
    Loftus W F. Lutjanus ambiguus (Poey), a natural intergeneric hybrid of Ocyurus chrysurus (Bloch) and Lutjanus synagris (Linnaeus). B Mar Sci, 1992, 50:489–499Google Scholar
  7. 7.
    Camper J D, Barber R C, Richardson L R, et al. Mitochondrial DNA variation among red snapper (Lutjanus campechanus) from the Gulf of Mexico. Mol Mar Biol Biotechnol, 1993, 2:154–161, 1:CAS:528:DyaK2cXisVSltbY%3D, 8103412PubMedGoogle Scholar
  8. 8.
    Gold J R, Richardson L R. Genetic homogeneity among geographic samples of snappers and groupers: Evidence of continuous gene flow. Proc Gulf Carib Fish Inst, 1998, 50:709–726Google Scholar
  9. 9.
    Gold J R, Sun F, Richardson L R. Population structure of red snapper from the Gulf of Mexico as inferred from analysis of mitochondrial DNA. T Am Fish Soc, 1997, 126:386–396, 1:CAS:528:DyaK2sXlt1Ckuro%3D, 10.1577/1548-8659(1997)126<0386:PSORSF>2.3.CO;2CrossRefGoogle Scholar
  10. 10.
    Gold J R, Richardson L R, Furman C, et al. Mitochondrial DNA diversity and population structure in marine fish species from the Gulf of Mexico. Can J Fish Aquat Sci, 1994, 51(Supplement 1):205–214, 1:CAS:528:DyaK2MXls1ersrw%3D, 10.1139/f94-306CrossRefGoogle Scholar
  11. 11.
    Sarver S K, Freshwater D W, Walsh P J. Phylogenetic relationships of Western Atlantic Snappers (Family Lutjanidae) based on mitochondrial DNA sequences. Copeia, 1996, 1996:715–721, 10.2307/1447537CrossRefGoogle Scholar
  12. 12.
    Kristmundsdo A, Barber R C, Gold J R. Restriction enzyme maps of mitochondrial DNA from red snapper, Lutjanus campechanus, and king mackerel, Scomberomorus cavalla. Gulf Mex Sci, 1996, 14:31–35Google Scholar
  13. 13.
    Guo Y S, Wang Z D, Liu C W, et al. Phylogenetic relationships of South China Sea Snappers (Genus Lutjanus; Family Lutjanidae) based on mitochondrial DNA sequences. Mar Biotechnol, 2007, 9:682–688, 1:CAS:528:DC%2BD2sXhtlyitLjE, 10.1007/s10126-007-9012-6, 17909901PubMedCrossRefGoogle Scholar
  14. 14.
    Yaakub S M, Bellwood D R, Herwerden L, et al. Hybridization in coral reef fishes: Introgression and bi-directional gene exchange in Thalassoma (family Labridae). Mol Phylogenet Evol, 2006, 40:84–100, 1:CAS:528:DC%2BD28XlvF2msLk%3D, 10.1016/j.ympev.2006.02.012, 16581267PubMedCrossRefGoogle Scholar
  15. 15.
    Iwatsuki Y, Akazaki M, Yoshino T. Validiity of a Lutjanid Fish, Lutjanus ophuysenii (Bleeker) with a related species, L.vitta (Quoy et Gaimard). Japan J Ichthyol, 1993, 40:47–59Google Scholar
  16. 16.
    Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual: Cold Spring Harbor. New York: Cold Spring Harbor Laboratory, 1989. 40Google Scholar
  17. 17.
    Ward R D, Zemlak T S, Innes B H, et al. DNA barcoding Australia’s fish species. Phil Trans Biol Sci, 2005, 360:1847–1857, 1:CAS:528:DC%2BD2MXhtlSjsrjK, 10.1098/rstb.2005.1716CrossRefGoogle Scholar
  18. 18.
    Quenouille B, Bermingham E, Planes S. Molecular systematics of the damselfishes (Teleostei: Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol, 2004, 31:66–88, 1:CAS:528:DC%2BD2cXhvFSks74%3D, 10.1016/S1055-7903(03)00278-1, 15019609PubMedCrossRefGoogle Scholar
  19. 19.
    Westneat M W, Alfaro M E. Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Mol Phylogenet Evol, 2005, 36:370–390, 10.1016/j.ympev.2005.02.001, 15955516PubMedCrossRefGoogle Scholar
  20. 20.
    Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol, 2007, 24:1596–1599, 1:CAS:528:DC%2BD2sXpsVGrsL8%3D, 10.1093/molbev/msm092, 17488738PubMedCrossRefGoogle Scholar
  21. 21.
    Xia X, Xie Z. DAMBE: Data analysis in molecular biology and evolution. Heredity, 2001, 92:371–373, 1:STN:280:DC%2BD3MvptlagtA%3D%3D, 10.1093/jhered/92.4.371CrossRefGoogle Scholar
  22. 22.
    Russell D J. Biology, management and genetic stock structure of Mangrove Jack (Lutjanus argentimaculatus) in Australia. Department of Primary Industries, Fisheries Research and Development Corporation, 2003. 87Google Scholar
  23. 23.
    Ward R D, Holmes B H, Yearsley G K. DNA barcoding reveals a likely second species of Asian sea bass (barramundi) (Lates calcarifer). J Fish Biol, 2008, 72:458–463, 10.1111/j.1095-8649.2007.01703.xCrossRefGoogle Scholar
  24. 24.
    Hajibabaei M, Singer G A, Hebert P D, et al. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet, 2007, 23:167–172, 1:CAS:528:DC%2BD2sXjslShur8%3D, 10.1016/j.tig.2007.02.001, 17316886PubMedCrossRefGoogle Scholar
  25. 25.
    Felsenstein J. Inferring Phylogenies. Sunderland (MA): Sinauer Associates, 2004. 664Google Scholar
  26. 26.
    Hajibabaei M, Singer G A, Hickey D A. Benchmarking DNA barcodes: an assessment using available primate sequences. Genome, 2006, 49:851, 1:CAS:528:DC%2BD28XhtFCht7%2FF, 10.1139/G06-025, 16936793PubMedCrossRefGoogle Scholar
  27. 27.
    Min X I, Hickey D O. Assessing the effect of varying sequence length on DNA barcoding of fungi. Mol Ecol Notes, 2007, 7:365–373, 1:CAS:528:DC%2BD2sXntVyktr4%3D, 10.1111/j.1471-8286.2007.01698.x, 18784789PubMedCrossRefGoogle Scholar
  28. 28.
    Hackett S J, Kimball R T, Reddy S, et al. A Phylogenomic study of birds reveals their evolutionary history. Science, 2008, 320: 1763–1768, 1:CAS:528:DC%2BD1cXnsF2qsr4%3D, 10.1126/science.1157704, 18583609PubMedCrossRefGoogle Scholar
  29. 29.
    Keck B P, Near T J. Assessing phylogenetic resolution among mitochondrial, nuclear, and morphological datasets in Nothonotus darters (Teleostei: Percidae). Mol Phylogenet Evol, 2008, 46:708–720, 1:CAS:528:DC%2BD1cXhvF2gtL8%3D, 10.1016/j.ympev.2007.08.015, 17920301PubMedCrossRefGoogle Scholar
  30. 30.
    Wang X Z, Li J B, He S P. Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Mol Phylogenet Evol, 2007, 42:157–170, 1:CAS:528:DC%2BD28Xht1CgsbrP, 10.1016/j.ympev.2006.06.014, 16919973PubMedCrossRefGoogle Scholar
  31. 31.
    Mccormack J E, Peterson A T, Bonaccorso E, et al. Speciation in the highlands of Mexico: genetic and phenotypic divergence in the Mexican jay (Aphelocoma ultramarina). Mol Ecol, 2008, 17: 2505–2521, 1:CAS:528:DC%2BD1cXotVOksL4%3D, 10.1111/j.1365-294X.2008.03776.x, 18430143PubMedCrossRefGoogle Scholar
  32. 32.
    Rocha L A, Lindeman K C, Rocha C R, et al. Historical biogeography and speciation in the reef fish genus Haemulon (Teleostei: Haemulidae). Mol Phylogenet Evol, 2008, 48:918–928, 1:CAS:528:DC%2BD1cXhtVyntL3L, 10.1016/j.ympev.2008.05.024, 18599320PubMedCrossRefGoogle Scholar
  33. 33.
    Barreto F S, Mccartney M A. Extraordinary aflp fingerprint similarity despite strong assortative mating between reef fish color morphospecies. Evolution, 2008, 62:226–233, 10.1111/j.1558-5646.2007.00285.x, 18053072PubMedCrossRefGoogle Scholar
  34. 34.
    Gray S M, Mckinnon J S. Linking color polymorphism maintenance and speciation. Trends Ecol Evol, 2007, 22:71–79, 10.1016/j.tree.2006.10.005, 17055107PubMedCrossRefGoogle Scholar
  35. 35.
    Seehausen O, Terai Y, Magalhaes I S, et al. Speciation through sensory drive in cichlid fish. Nature, 2008, 455:620–626, 1:CAS:528:DC%2BD1cXhtF2hsbrL, 10.1038/nature07285, 18833272PubMedCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • ZhongDuo Wang
    • 1
    • 2
    • 3
  • YuSong Guo
    • 1
    • 3
  • Wei Tan
    • 1
  • Lu Li
    • 1
  • EnPu Tang
    • 1
  • ChuWu Liu
    • 1
    • 2
    • 3
    Email author
  • Yun Liu
    • 2
  1. 1.Fisheries CollegeGuangdong Ocean UniversityZhanjiangChina
  2. 2.College of Life ScienceHunan Normal UniversityChangshaChina
  3. 3.Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesZhanjiangChina

Personalised recommendations