Advertisement

Science China Life Sciences

, Volume 53, Issue 7, pp 757–765 | Cite as

Ecosystem carbon stocks and their changes in China’s grasslands

  • JingYun FangEmail author
  • YuanHe Yang
  • WenHong Ma
  • Anwar Mohammat
  • HaiHua Shen
Article

Abstract

The knowledge of carbon (C) stock and its dynamics is crucial for understanding the role of grassland ecosystems in China’s terrestrial C cycle. To date, a comprehensive assessment on C balance in China’s grasslands is still lacking. By reviewing published literature, this study aims to evaluate ecosystem C stocks (both vegetation biomass and soil organic C) and their changes in China’s grasslands. Our results are summarized as follows: (1) biomass C density (C stock per area) of China’s grasslands differed greatly among previous studies, ranging from 215.8 to 348.1 g C m−2 with an average of 300.2 g C m−2. Likewise, soil C density also varied greatly between 8.5 and 15.1 kg C m−2. In total, ecosystem C stock in China’s grasslands was estimated at 29.1 Pg C. (2) Both the magnitude and direction of ecosystem C changes in China’s grasslands differed greatly among previous studies. According to recent reports, neither biomass nor soil C stock in China’s grasslands showed a significant change during the past 20 years, indicating that grassland ecosystems are C neutral. (3) Spatial patterns and temporal dynamics of grassland biomass were closely correlated with precipitation, while changes in soil C stocks exhibited close associations with soil moisture and soil texture. Human activities, such as livestock grazing and fencing could also affect ecosystem C dynamics in China’s grasslands.

Keywords

alpine grasslands biomass carbon sink climate change soil organic carbon soil texture temperate grasslands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scurlock J M, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biol, 2002, 8: 736–753, 10.1046/j.1365-2486.2002.00512.xCrossRefGoogle Scholar
  2. 2.
    Chen Z Z, Wang S P. Typical Steppe Ecosystems of China. Beijing: Science Press, 2000 (in Chinese)Google Scholar
  3. 3.
    Department of Animal Husbandry and Veterinary. Rangeland Resources of China. Beijing: China Science and Technology Press, 1996 (in Chinese)Google Scholar
  4. 4.
    Kang L, Han X G, Zhang Z B, et al. Grassland ecosystems in China: review of current knowledge and research advancement. Phil Trans Roy Soc B-Biol Sci (Series B), 2007, 362: 997–1008, 10.1098/rstb.2007.2029CrossRefGoogle Scholar
  5. 5.
    Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci China Ser D-Earth Sci, 2007, 50: 1341–1350, 10.1007/s11430-007-0049-1, 1:CAS:528:DC%2BD2sXht1yiurrOCrossRefGoogle Scholar
  6. 6.
    Piao S L, Fang J Y, Ciais P, et al. The Carbon balance of terrestrial ecosystems in China. Nature, 2009, 458: 1009–1013, 10.1038/nature07944, 19396142, 1:CAS:528:DC%2BD1MXkvFKhtLc%3DPubMedCrossRefGoogle Scholar
  7. 7.
    Yang Y H, Fang J Y, Ma W H, et al. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Global Change Biol, 2010, doi: 10.1111/j.1365-2486.2009.02123.xGoogle Scholar
  8. 8.
    Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biol, 2008, 14, 1592–1599, 10.1111/j.1365-2486.2008.01591.xCrossRefGoogle Scholar
  9. 9.
    Wang Q J, Wang W Y, Deng Z F. The dynamics of biomass and the allocation of energy in alpine Kobresia meadow communities, Haibei region of Qinghai province (in Chinese). Acta Phytaecol Sin, 1998, 22: 222–230Google Scholar
  10. 10.
    Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181–184, 10.1038/nature02850, 15356630, 1:CAS:528:DC%2BD2cXntlGks7w%3DPubMedCrossRefGoogle Scholar
  11. 11.
    Ma W H, Liu Z L, Wang Z H, et al. Climate change alters interannual variation of grassland aboveground productivity: evidence from a 22-year measurement series in the Inner Mongolian grassland. J Plant Res, 2010, doi: 10.1007/s10265-009-0302-0Google Scholar
  12. 12.
    Zhou H K, Zhou L, Zhao X Q, et al. Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Chin Sci Bull, 2006, 51: 320–327, 10.1007/s11434-006-0320-4CrossRefGoogle Scholar
  13. 13.
    Fan J W, Zhong H P, Harris W, et al. Carbon storage in the grasslands of China based on field measurements of above- and belowground biomass. Clim Change, 2008, 86: 375–396, 10.1007/s10584-007-9316-6, 1:CAS:528:DC%2BD2sXhsVKgsrbFCrossRefGoogle Scholar
  14. 14.
    Yang Y H, Fang J Y, Smith P, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Global Change Biol, 2009, 15: 2723–2729, 10.1111/j.1365-2486.2009.01924.xCrossRefGoogle Scholar
  15. 15.
    Wang S P, Zhou G S, Lv Y C, et al. Distribution of soil carbon, nitrogen and phosphorusalong northeast China transect (NECT) and their relationships with climatic factors (in Chinese). Acta Phytoecol Sin, 2002, 26: 513–517Google Scholar
  16. 16.
    Tian Y Q, Ouyang H, Song M H, et al. Distribution characteristics and influencing factors of soil organic carbon in alpine ecosystems on Tibetan Plateau transect (in Chinese). J Zhejiang Univ (Agric & Life Sci), 2007, 33: 443–449, 1:CAS:528:DC%2BD1cXos1Ors7g%3DGoogle Scholar
  17. 17.
    Ni J. Carbon storage in grasslands of China. J Arid Environ, 2002, 50: 205–218, 10.1006/jare.2001.0902CrossRefGoogle Scholar
  18. 18.
    Piao S L, Fang J Y, Zhou L M, et al. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochem Cy, 2007, 21: GB2002, doi:10.1029/2005GB002634, 10.1029/2005GB002634, 1:CAS:528:DC%2BD2sXovFagtbw%3DGoogle Scholar
  19. 19.
    Xie Z B, Zhu J G, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biol, 2007, 13: 1989–2007, 10.1111/j.1365-2486.2007.01409.xCrossRefGoogle Scholar
  20. 20.
    Anwar M, Yang Y H, Guo Z D, et al. Grassland aboveground biomass in Xinjiang (in Chinese). Acta Sci Nat Univ Pekinensis, 2006, 42: 521–526Google Scholar
  21. 21.
    Fang J Y, Liu G H, Xu S L. Carbon reservoir of terrestrial ecosystem in China. In: Wang G C, Wen Y P. eds. Monitoring and Relevant Process of Greenhous Gas Concentration and Emission. Beijing: China Environmental Science Publishing House, 1996 (in Chinese)Google Scholar
  22. 22.
    Ma W H, Han M, Lin X, et al. Carbon storage in vegetation of grasslands in Inner Mongolia (in Chinese). J Arid Land Res Envir, 2006, 20: 192–195Google Scholar
  23. 23.
    Piao S L, Fang J Y, He J S, et al. Spatial distribution of grassland biomass in China (in Chinese). Acta Phytoecol Sin, 2004, 28: 491–498Google Scholar
  24. 24.
    Wang J L, Chang T J, Li P, et al. The vegetation carbon reserve and its spatial distribution configuration of grassland ecosystem in Tibet (in Chinese). Acta Ecol Sin, 2009, 29: 931–938, 1:CAS:528:DC%2BD1MXktFKjs7w%3DGoogle Scholar
  25. 25.
    Ma W H, Fang J Y, Mohammat A, et al. Biomass carbon and its changes in northern China’s grasslands, 1982–2006. Sci China Life Sci, 2010, 53: 841–850, 10.1007/s11427-010-4020-6, 20697873PubMedCrossRefGoogle Scholar
  26. 26.
    Ni J. Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change. Clim Change, 2001, 49: 339–358, 10.1023/A:1010728609701, 1:CAS:528:DC%2BD3MXktVamtbo%3DCrossRefGoogle Scholar
  27. 27.
    Ni J. Forage yield-based carbon storage in grasslands of China. Clim Change, 2004, 67: 237–246, 10.1007/s10584-004-0070-8, 1:CAS:528:DC%2BD2MXitlKhsrY%3DCrossRefGoogle Scholar
  28. 28.
    Yang Y H, Fang J Y, Pan Y D, et al. Aboveground biomass in Tibetan grasslands. J Arid Environ, 2009, 73: 91–95, 10.1016/j.jaridenv.2008.09.027CrossRefGoogle Scholar
  29. 29.
    Li K R, Wang S Q, Cao M K. Vegetation and soil carbon storage in China. Sci China Ser D-Earth Sci, 2004, 47: 49–57, 10.1360/02yd0029, 1:CAS:528:DC%2BD2cXhsVOqsL4%3DCrossRefGoogle Scholar
  30. 30.
    Wang S Q, Zhou C H, Luo C W. Studying carbon storage spatial distribution of terrestrial natural vegetation in China (in Chinese). Prog Geogr, 1999, 18: 238–244, 1:CAS:528:DC%2BD3cXhsV2hsrc%3DGoogle Scholar
  31. 31.
    Olson R J, Watts J A, Allison L J. Carbon in live vegetation of major world ecosystem, ed. O.R.N. Laboratory. Oak Ridge. 1983Google Scholar
  32. 32.
    Yang Y H, Fang J Y, Ma W H, et al. Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecol Biogeogr, 2010, 19: 268–277, 10.1111/j.1466-8238.2009.00502.xCrossRefGoogle Scholar
  33. 33.
    Wang L, Niu K, Yang Y H, et al. Patterns of above- and belowground biomass allocation in China’s grasslands: evidence from individual-level observations. Science China Life Sci, 2010, 53: 851–857, 10.1007/s11427-010-4027-zCrossRefGoogle Scholar
  34. 34.
    Yang Y H, Fang J Y, Ji C J, et al. Above- and belowground biomass allocation in Tibetan grasslands. J Veg Sci, 2009, 20: 177–184, 10.1111/j.1654-1103.2009.05566.xCrossRefGoogle Scholar
  35. 35.
    Seying B T, Jia F, The position monitoring of temporal and spatial dynamics of grassland biomass in northern China (in Chinese). Grassland China, 2003, 25: 9–14Google Scholar
  36. 36.
    Fang J Y, Piao S L, He J S, et al. Increasing terrestrial vegetation activity in China, 1982–1999. Sci China Ser C-Life Sci, 2004, 47: 229–240Google Scholar
  37. 37.
    Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biol, 2006, 12: 672–685, 10.1111/j.1365-2486.2006.01123.xCrossRefGoogle Scholar
  38. 38.
    Fang J Y, Liu G H, Xu S L. Soil carbon pool in China and its global significance. J Environ Sci (China), 1996, 8: 249–254, 1:CAS:528:DyaK2sXjs1Wgug%3D%3DGoogle Scholar
  39. 39.
    Chen Q M, Wang S Q, Yu G R. Spatial characteristics of soil organic carbon and nitrogen in Inner Mongolia (in Chinese). Chin J Appl Ecol, 2003, 14: 699–704, 1:CAS:528:DC%2BD3sXmvFygsbY%3DGoogle Scholar
  40. 40.
    Wang G X, Cheng G D, Shen Y P. Soil organic carbon pool of grasslands on the Tibetan Plateau and its global implication (in Chinese). J Glaciol Geocryol, 2002, 24: 693–700Google Scholar
  41. 41.
    Zhang Y Q, Tang Y H, Jiang J, et al. Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau. Sci China Ser D-Earth Sci, 2007, 50: 113–120, 10.1007/s11430-007-2032-2, 1:CAS:528:DC%2BD2sXjvF2jsbs%3DCrossRefGoogle Scholar
  42. 42.
    Yang Y H, Ma W H, Mohammat A, et al. Storage, patterns and controls of soil nitrogen in China. Pedosphere, 2007, 17: 776–785, 10.1016/S1002-0160(07)60093-9, 1:CAS:528:DC%2BD2sXhsVyhtb7JCrossRefGoogle Scholar
  43. 43.
    Yang Y H, Mohammat A, Feng J M, et al. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 2007, 84: 131–141, 10.1007/s10533-007-9109-zCrossRefGoogle Scholar
  44. 44.
    Xie X L, Sun B, Zhou H Z, et al. Organic carbon density and storage in soils of China and spatial analysis (in Chinese). Acta Pedol Sin, 2004, 41: 35–43Google Scholar
  45. 45.
    Wu H B, Guo Z T, Peng C H. Distribution and storage of soil organic carbon in China. Global Biogeochem Cy, 2003. 17, GB1048, doi: 10.1029/2001GB001844Google Scholar
  46. 46.
    Wang S Q, Zhou C H, Li K R, et al. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China (in Chinese). Acta Geogr Sin, 2000, 55: 533–544Google Scholar
  47. 47.
    Wynn J G, Bird M I, Vellen L, et al. Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Global Biogeochem Cy, 2006, 20, GB1007, doi: 10.1029/2005GB002576, 10.1029/2005GB002576, 1:CAS:528:DC%2BD28Xks1Sguro%3DCrossRefGoogle Scholar
  48. 48.
    Ma W H, Yang Y H, He J S, et al. Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Sci China Ser C-Life Sci, 2008, 51: 263–270, 10.1007/s11427-008-0029-5CrossRefGoogle Scholar
  49. 49.
    Xiao X M. Sensitivity of Inner Mongolia grasslands to climate change. J Biogeogr, 1995, 22: 643–648, 10.2307/2845965CrossRefGoogle Scholar
  50. 50.
    Han B, Fan J W, Zhong H P. Grassland biomass of communities along gradients of the Inner Mongolia grassland transect (in Chinese). J Plant Ecol, 2006, 30: 553–562CrossRefGoogle Scholar
  51. 51.
    Gu Z H, Chen J, Shi P J, et al. Correlation analysis of NDVI difference series and climate variables in Xinlingole steppe from 1983 to 1999 (in Chinese). Acta Phytoecol Sin, 2005, 29: 753–765Google Scholar
  52. 52.
    Bai Y F, Wu J G, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 2008, 89: 2140–2153, 10.1890/07-0992.1, 18724724PubMedCrossRefGoogle Scholar
  53. 53.
    Yang Y H, Fang J Y, Ma W H, et al. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophys Res Lett, 2008, 35, L23710, doi: 10.1029/2008GL035408., 10.1029/2008GL035408CrossRefGoogle Scholar
  54. 54.
    Bai Y F. Influence of seasonal distribution of precipitation on primary productivity of Stipa krylovii community (in Chinese). Acta Phytoecol Sin, 1999, 23: 155–160Google Scholar
  55. 55.
    Bai Y F, Xu Z X. A model of above-ground biomass of Aneurolepidium chinense community in response to seasonal precipitation (in Chinese). Acta Pratacult Sin, 1997, 6: 1–6Google Scholar
  56. 56.
    Cai X C, Li Z Q, Chen Z Z, et al. The relationship between aboveground biomass and precipitation on Stipa grandis steppe in Inner Mongolia (in Chinese). Acta Ecol Sin, 2005, 25: 1657–1662Google Scholar
  57. 57.
    Han G D. Influence of precipitation and air temperature of primary productivity of Stipa klemenzii plant community, NeiMongol (in Chinese). Acta Sci Nat Univ NeiMongol, 2002, 33: 83–88Google Scholar
  58. 58.
    Wang Y H, Zhou G S. Responses of temporal dynamics of aboveground net primary productivity of Leymus chinensis community to precipitation fluctuation in Inner Mongolia (in Chinese). Acta Ecol Sin, 2004, 24: 1140–1145Google Scholar
  59. 59.
    Fang J Y, Piao S L, Tang Z Y, et al. Interannual variability in net primary production and precipitation. Science, 2001, 293: 1723a, 10.1126/science.293.5536.1723aCrossRefGoogle Scholar
  60. 60.
    Chen Y H, Li X B, Shi P J. Variation in NDVI driven by climate factors across China, 1983–1992. Acta Phytoecol Sin, 2001, 25: 716–720. (in Chinese)Google Scholar
  61. 61.
    Piao S, Mohammat A, Fang J Y, et al. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environ Change, 2006, 16: 340–348, 10.1016/j.gloenvcha.2006.02.002CrossRefGoogle Scholar
  62. 62.
    Li J H, Li Z Q. Clonal morphological plasticity and biomass allocation pattern of Artemisia frigida and Potentilla acaulis under different grazing intensities (in Chinese). Acta Phytoecol Sin, 2002, 26: 435–440Google Scholar
  63. 63.
    Wang G J, Wang S P, Hao Y B, et al. Effect of grazing on the plant functional group diversity and community biomass and their relationship along a precipitation gradient in Inner Mongolia Steppe (in Chinese). Acta Ecol Sin, 2005, 25: 1649–1656Google Scholar
  64. 64.
    Wang Y F, Wang S P. Influence of different stocking rates on belowground biomass in Inner Mongolia Steppe (in Chinese). Acta Agrest Sin, 1999, 7: 198–203Google Scholar
  65. 65.
    Fan J W, Zhong H P, Liang B, et al. Carbon stock in grassland ecosystem and its affecting factors (in Chinese). Grassland China, 2003, 25: 51–58Google Scholar
  66. 66.
    Han G D, Wei Z J. Influence of grazing intensity on underground biomass and carbohydrates) (in Chinese). J Forage Feed, 1990, 2: 16–19Google Scholar
  67. 67.
    Xilin T Y, Xu Z, Zheng Y. Influence of different stocking rates on underground biomass and net primary productivity on Stipa krylovii steppe in Inner Mongolia (in Chinese). Chin J Grassland, 2009, 31: 26–29Google Scholar
  68. 68.
    Dong Q M, Li Q Y, Ma Y T, et al. Effects of yak stocking rates on aboveground and belowground biomass Kobrecia parva alpine meadows (in Chinese). Sichuan Grassland, 2004, 2: 20–27Google Scholar
  69. 69.
    Dong Q M, Zhao X Q, Ma Y T, et al. Regression analysis between stocking rate for yak and aboveground and underground biomass of warm-season pasture in Kobrecia parva alpine meadow (in Chinese). Pratacult Sci, 2005, 22: 65–71Google Scholar
  70. 70.
    Wang S P, Wang Y F, Li Y H, et al. The influence of different stocking rates on herbage regrowth and aboveground net primary production (in Chinese). Acta Agrest Sin, 1998, 6: 275–281Google Scholar
  71. 71.
    Zuo W Q, Wang Y H, Wang F Y, et al. Effects of enclosure on the community characteristics of Leymus chinensis in degenerated steppe (in Chinese). Acta Pratacult Sin, 2009, 18: 12–19Google Scholar
  72. 72.
    Sang Y Y, Ning H C, Qu H L. Surveying biomass of degraded grassland for forbidden grazing and enclosing after three years (in Chinese). Qinghai Pratacult, 2006, 15: 7–9Google Scholar
  73. 73.
    Wu G L, Du G Z, Liu Z H. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant Soil, 2009, 319: 115–126, 10.1007/s11104-008-9854-3, 1:CAS:528:DC%2BD1MXlvFOrs7s%3DCrossRefGoogle Scholar
  74. 74.
    Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440: 165–173, 10.1038/nature04514, 16525463, 1:CAS:528:DC%2BD28XitFGitLo%3DPubMedCrossRefGoogle Scholar
  75. 75.
    Fang J Y, Piao S, Field C B, et al. Increasing net primary production in China from 1982 to 1999. Front Ecol Environ, 2003, 1: 293–297, 10.1890/1540-9295(2003)001[0294:INPPIC]2.0.CO;2CrossRefGoogle Scholar
  76. 76.
    Feng X J, Simpson A J, Wislson K P, et al. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat Geosci, 2008, 1: 836–839, 10.1038/ngeo361, 1:CAS:528:DC%2BD1cXhsVChurvICrossRefGoogle Scholar
  77. 77.
    Shi F, Li Y E, Gao Q J, et al. Effects of managements on soil organic carbon of grassland in China (in Chinese). Pratacult Science, 2009, 26: 9–15, 1:CAS:528:DC%2BD1MXhsVWiurfKGoogle Scholar
  78. 78.
    Zhou Z, Sun O, Huang J, et al. Soil carbon and nitrogen stores and storage potential as affected by land-use in an agro-pastoral ecotone of northern China. Biogeochemistry, 2007, 82: 127–138, 10.1007/s10533-006-9058-y, 1:CAS:528:DC%2BD2sXlslWgsA%3D%3DCrossRefGoogle Scholar
  79. 79.
    Li L H. Effects of land-use change on soil carbon storage in grassland ecosystems (in Chinese). Acta Phytoecol Sin, 1998, 22: 300–302Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • JingYun Fang
    • 1
    Email author
  • YuanHe Yang
    • 1
  • WenHong Ma
    • 1
  • Anwar Mohammat
    • 1
  • HaiHua Shen
    • 1
  1. 1.Department of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental SciencePeking UniversityBeijingChina

Personalised recommendations