Science China Life Sciences

, Volume 53, Issue 7, pp 798–810 | Cite as

Biomass and carbon dynamics of a tropical mountain rain forest in China

  • DeXiang ChenEmail author
  • YiDe Li
  • HePing Liu
  • Han Xu
  • WenFa Xiao
  • TuShou Luo
  • Zhang Zhou
  • MingXian Lin


Biometric inventories for 25 years, from 1983 to 2005, indicated that the Jianfengling tropical mountain rain forest in Hainan, China, was either a source or a modest sink of carbon. Overall, this forest was a small carbon sink with an accumulation rate of (0.56±0.22) Mg C ha−1yr−1, integrated from the long-term measurement data of two plots (P9201 and P8302). These findings were similar to those for African and American rain forests ((0.62±0.23) Mg C ha−1yr−1). The carbon density varied between (201.43±29.38) Mg C ha−1 and (229.16±39.2) Mg C ha−1, and averaged (214.17±32.42) Mg C ha−1 for plot P9201. Plot P8302, however, varied between (223.95±45.92) Mg C ha−1 and (254.85±48.86) Mg C ha−1, and averaged (243.35±47.64) Mg C ha−1. Quadratic relationships were found between the strength of carbon sequestration and heavy rainstorms and dry months. Precipitation and evapotranspiration are two major factors controlling carbon sequestration in the tropical mountain rain forest.


Jianfengling tropical mountain rain forest biomass carbon storage environmental determinants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production. Nature, 1993, 363: 234–240, 10.1038/363234a0, 1:CAS:528:DyaK3sXksFeiu78%3DCrossRefGoogle Scholar
  2. 2.
    Malhi Y, Grace J. Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol, 2000, 15: 332–337, 10.1016/S0169-5347(00)01906-6, 10884705PubMedCrossRefGoogle Scholar
  3. 3.
    Lewis S L. Tropical forests and the changing earth system. Phil Trans R Soc Lond B, 2000, 261: 195–210Google Scholar
  4. 4.
    Waring R H, Schlesinger W. Forest Ecosystems: Concepts and Management. Orlando: Academic Press, 1985Google Scholar
  5. 5.
    Kira T, Shidei T. Primary production and turnover of organic matter in different forest ecosystems of the western pacific. Jpn J Ecol, 1967, 17: 70–87Google Scholar
  6. 6.
    Grace J, Malhi Y. Global change: carbon dioxide goes with the flow. Nature, 2002, 416: 594–595, 10.1038/416594b, 11948337, 1:CAS:528:DC%2BD38XjtFahsb8%3DPubMedCrossRefGoogle Scholar
  7. 7.
    Baker T R, Phillips O L, Malhi Y, et al. Increasing biomass in Amazonian forest plots. Philos T Roy Soc B, 2004, 359: 353–365, 10.1098/rstb.2003.1422CrossRefGoogle Scholar
  8. 8.
    Phillips O L, Lewis S L, Baker T R, et al. The changing Amazon forest. Philos T Roy Soc B, 2008, 363: 1819–1827, 10.1098/rstb.2007.0033CrossRefGoogle Scholar
  9. 9.
    Lewis S L, Lopez-Gonzalez G, Sonke B, et al. Increasing carbon storage in intact African tropical forest. Nature, 2009, 457: 1003–1007, 10.1038/nature07771, 19225523, 1:CAS:528:DC%2BD1MXitFKktrs%3DPubMedCrossRefGoogle Scholar
  10. 10.
    Malhi Y R, Wood D, Baker T, et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Change Biol, 2006, 12: 1107–1138, 10.1111/j.1365-2486.2006.01120.xCrossRefGoogle Scholar
  11. 11.
    Lewis S L, Phillips O L, Baker T R, et al. Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philos T Roy Soc B, 2004, 359: 421–436, 10.1098/rstb.2003.1431, 1:STN:280:DC%2BD2czhtVSqtw%3D%3DCrossRefGoogle Scholar
  12. 12.
    Brown S A, Hall C A S, Knabe W, et al. Tropical forests: their past, present, and potential future role in the terrestrial carbon budget. Water Air Soil Poll, 1993, 70: 71–94, 10.1007/BF01104989, 1:CAS:528:DyaK3sXmtlalt70%3DCrossRefGoogle Scholar
  13. 13.
    Melillo J M, Prentice I C, Farquhar G D, et al. Terrestrial biotic responses to environmental change and feedbacks to climate. In: Houghton J T, Meira Filho L G, Callander B A, et al. eds. Climate Change 1995: the Science of Climate Change. New York: Cambridge University Press, 1996. 444–481Google Scholar
  14. 14.
    DeFries R S, Houghton R A, Hansen M C, et al. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 90s. Proc Natl Acad Sci USA, 2002, 99: 14256–14261, 10.1073/pnas.182560099, 12384569, 1:CAS:528:DC%2BD38XosF2itbY%3DPubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cramer W, Bondeau A, Schaphoff S, et al. Tropical froests and global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Phil Trans R Soc Lond B, 2004, 359: 331–343, 10.1098/rstb.2003.1428, 1:CAS:528:DC%2BD2cXls1SjsrY%3DCrossRefGoogle Scholar
  16. 16.
    Houghton R H. Aboveground forest biomass and global carbon balance. Glob Change Biol, 2005, 11: 945–958, 10.1111/j.1365-2486.2005.00955.xCrossRefGoogle Scholar
  17. 17.
    Tian H, Melillo J M, Kicklighte D W, et al. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Global Ecol Biogeogr, 2000, 9: 315–335, 10.1046/j.1365-2699.2000.00198.xCrossRefGoogle Scholar
  18. 18.
    Houghton R A. Tropical deforestation and atmospheric carbon dioxide. Climatic Change, 1991, 19: 99–118, 10.1007/BF00142217, 1:CAS:528:DyaK38XmsF2ksw%3D%3DCrossRefGoogle Scholar
  19. 19.
    Hall C A S, Tian H, Qi Y, et al. Modelling spatial and temporal pattern of tropical land use change. J Biogeogr, 1995, 22: 753–757, 10.2307/2845977CrossRefGoogle Scholar
  20. 20.
    Melillo J M, Houghton R A, Kicklighter D W, et al. Tropical deforestation and the global carbon budget. Annu Rev Energ Env, 1996, 21: 293–310, 10.1146/ Scholar
  21. 21.
    Li Y D. Community structure in a tropical montane rain forest at Jianfengling, Hainan Island, China (in Chinese). J Trop Subtrop Bot, 1997, 5: 18–26Google Scholar
  22. 22.
    Fang J Y, Li Y D, Zhu B, et al. Community structures and species richness in the montane rain forest of Jianfengling, Hainan Island, China (in Chinese). Biodivers Sci, 2004, 12: 29–43Google Scholar
  23. 23.
    Brown S. Estimating Biomass and Biomass Change of Tropical Forests FAO, Forestry Paper 134. Rome: Forest Resources Assessment Publication, 1997Google Scholar
  24. 24.
    Clark D B, Clark D A. Landscape-scale variation in forest structure and biomass in a tropical rain forest. For Ecol Manag, 2000, 137: 185–198, 10.1016/S0378-1127(99)00327-8CrossRefGoogle Scholar
  25. 25.
    Zeng Q B, Li Y D, Chen B F, et al. Management on Tropical Forest Ecosystems (in Chinese). Beijing: China Forestry Press, 1997. 202Google Scholar
  26. 26.
    Dong M. Survey, Observation and Analysis of Terrestrial Biocommunities (in Chinese). Beijing: Standards Press of China, 1997. 143–183Google Scholar
  27. 27.
    Oldeman L R, Frére M. A study of the Agroclimatology of the humid tropics of South-East Asia. WMO Technical Note No. 179, Geneva, 1982Google Scholar
  28. 28.
    FAO. Guidelines: Land evaluation for irrigated agriculture. Soil bulletin No. 55, FAO, Rome, 1985Google Scholar
  29. 29.
    Kirby K R, Potvin C. Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project. For Ecol Manag, 2007, 246: 208–221, 10.1016/j.foreco.2007.03.072CrossRefGoogle Scholar
  30. 30.
    Andreae M O, Artaxo P, Brandao C, et al. Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA-EUSTACH experiments. J Geophys Res-Atmos, 2002, 107, No. D20, 8066, doi: 10.1029/2001JD000524, 10.1029/2001JD000524, 1:CAS:528:DC%2BD3sXivVeht7w%3DCrossRefGoogle Scholar
  31. 31.
    Phillips O L, Malhi Y, Higuchi N, et al. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science, 1998, 282: 439–442, 10.1126/science.282.5388.439, 9774263, 1:CAS:528:DyaK1cXmslaqu74%3DPubMedCrossRefGoogle Scholar
  32. 32.
    Phillips O L, Aragao L E, Lewis S L, et al. Drought sensitivity of the Amazon rainforest. Science, 2009, 323: 1344–1347, 10.1126/science.1164033, 19265020, 1:CAS:528:DC%2BD1MXisFemt7Y%3DPubMedCrossRefGoogle Scholar
  33. 33.
    Schuur E A G. Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology, 2003, 84: 1165–1170, 10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2CrossRefGoogle Scholar
  34. 34.
    Schuur E A G. The effect of water on decomposition dynamics. Ecosystems, 2001, 4: 259–273, 10.1007/s10021-001-0008-1, 1:CAS:528:DC%2BD3MXltVKksLs%3DCrossRefGoogle Scholar
  35. 35.
    Saleska S R, Miller S D, Matross D M, et al. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science, 2003, 302: 1554–1557, 10.1126/science.1091165, 14645845, 1:CAS:528:DC%2BD3sXpt1SmsLw%3DPubMedCrossRefGoogle Scholar
  36. 36.
    Raich J W, Rastetter E B, Melillo J M, et al. Potential net primary productivity in South America: application of a global model. Ecol Appl, 1991, 1: 399–429, 10.2307/1941899CrossRefGoogle Scholar
  37. 37.
    Neill C, Melillo J M, Steudler P A, et al. Soil carbon and nitrogen stocks following forest clearing for pasture in the Southwestern Brazilian Amazon. Ecol Appl, 1997, 7: 1216–1225, 10.1890/1051-0761(1997)007[1216:SCANSF]2.0.CO;2CrossRefGoogle Scholar
  38. 38.
    Singh B, Sing G. Influence of soil water regime on nutrient mobility and uptake by Dalbergia sissoo seedlings. Trop Ecol, 2004, 45: 337–340Google Scholar
  39. 39.
    Breymeyer A I, Hall D O, Melillo J M, et al. Global Change: Effects on Coniferous Forests and Grasslands (Scope No. 56). New York: John Wiley & Sons Ltd., 1997Google Scholar
  40. 40.
    Boisvenue C, Running S W. Impacts of climate change on natural forest productivity: Evidence since the middle of the 20th century. Glob Change Biol, 2006, 12: 862–882, 10.1111/j.1365-2486.2006.01134.xCrossRefGoogle Scholar
  41. 41.
    Verburg P S J. Soil solution and soil N response to climate change in two boreal forest ecosystems. Biol Fert Soils, 2005, 41: 257–261, 10.1007/s00374-005-0831-1, 1:CAS:528:DC%2BD2MXjtVWmtbo%3DCrossRefGoogle Scholar
  42. 42.
    Adams A B, Harrison R B, Sletten R S, et al. Nitrogen fertilization impacts on carbon sequestration and flux in managed coastal Douglas-fir stands of the Pacific Northwest. For Ecol Manag, 2005, 220: 313–325, 10.1016/j.foreco.2005.08.018CrossRefGoogle Scholar
  43. 43.
    Hagedorn F, Maurer S, Bucher J B, et al. Immobilization, stabilization and remobilization of nitrogen in forest soils at elevated CO2: a 15N and 13C tracer study. Glob Change Biol, 2005, 11: 1816–1827, 10.1111/j.1365-2486.2005.01041.xCrossRefGoogle Scholar
  44. 44.
    Nepstad D C, Moutinho P, Dias-Filho M B. The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. J Geophys Res, 2002, 107, NO. D20, 8085, doi 10.1029/2001JD000360., 10.1029/2001JD000360, 1:CAS:528:DC%2BD3sXivVehtL4%3DCrossRefGoogle Scholar
  45. 45.
    Brando P, Nepstad D, Davidson E, et al. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Phil Trans R Soc B, 2008, 363: 1839–1848, 10.1098/rstb.2007.0031, 18267902PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Miranda A C, Miranda H S, Lloyd J. Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes. Plant Cell Environ, 1997, 20: 315–328, 10.1046/j.1365-3040.1997.d01-80.x, 1:CAS:528:DyaK2sXit1Oktrg%3DCrossRefGoogle Scholar
  47. 47.
    Malhi Y, Nobre A D, Grace J, et al. Carbon dioxide transfer over a Central Amazonian rain forest. J Geophys Res, 1998, 103: 31593–31612, 10.1029/98JD02647, 1:CAS:528:DyaK1MXovVWjsg%3D%3DCrossRefGoogle Scholar
  48. 48.
    Oberbauer S F, Loescher H, Clark D B. Effects of climate factors on daytime carbon exchange from an old-growth forest in Costa Rica. Selbyana, 2000, 21: 66–73Google Scholar
  49. 49.
    Raich J W, Nadelhoffer K J. Belowground carbon allocation in forest ecosystems: global trends. Ecology, 1989, 70: 1346–1354, 10.2307/1938194CrossRefGoogle Scholar
  50. 50.
    Tian H, Melillo J M, Kicklighter D W, et al. Effect of interannual climate variability on carbon storage in undisturbed Amazonian ecosystems. Nature, 1998, 396: 664–667, 10.1038/25328, 1:CAS:528:DyaK1MXisVartQ%3D%3DCrossRefGoogle Scholar
  51. 51.
    Denny M W, Hunt L J, Miller L P, et al. On the prediction of extreme ecological events. Ecol Monogr, 2009, 79: 397–421, 10.1890/08-0579.1CrossRefGoogle Scholar
  52. 52.
    FAO. Forest Resources Assessment 1990. Global Synthesis. FAO Forestry Paper, 1995. 124Google Scholar
  53. 53.
    FAO. Forest Resources Assessment 1990. Tropical Countries. FAO Forestry Paper, 1993. 112Google Scholar
  54. 54.
    FAO. Global Forest Resources Assessment 2000, Main Report. FAO Forestry Paper, 2001. 140Google Scholar
  55. 55.
    FAO/UNEP. Tropical Forest Resources Assessment Project. 1981Google Scholar
  56. 56.
    Achard F, Eva H D, Mayaux P, et al. Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Global Biogeochem Cy, 2004, 18: 1–11, 10.1029/2003GB002142, 1:CAS:528:DC%2BD2cXmvFaqtbg%3DCrossRefGoogle Scholar
  57. 57.
    Houghton R A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus, 2003, 55B: 378–390, 1:CAS:528:DC%2BD3sXktlSiu7c%3DCrossRefGoogle Scholar
  58. 58.
    Clark D A, Brown S, Kicklighter D, et al. Measuring net primary production in forests: concepts and field methods. Ecol Appl, 2001, 11: 356–370, 10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2CrossRefGoogle Scholar
  59. 59.
    Aiba S, Takyu M, Kitayama K. Dynamics, productivity and species richness of tropical rainforests along elevational and edaphic gradients on Mount Kinabalu, Borneo. Ecol Res, 2005, 20: 279–286, 10.1007/s11284-005-0043-zCrossRefGoogle Scholar
  60. 60.
    DeWalt S J, Chave J. Structure and biomass of four lowland neotropical forests. Biotropica, 2004, 36: 7–19Google Scholar
  61. 61.
    Chave J, Condit R, Lao S, et al. Hubbell. Spatial and temporal variation of biomass in a tropical forest: results from a large census in Panamá. J Ecol, 2003, 91: 240–252, 10.1046/j.1365-2745.2003.00757.xCrossRefGoogle Scholar
  62. 62.
    Kauffman J B, Cummings D L, Ward D E, et al. Fire in the Brazilian Amazon: 1. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia, 1995, 104: 397–408, 10.1007/BF00341336CrossRefGoogle Scholar
  63. 63.
    Hughes R F, Kauiffman J B, Cummings D L. Dynamics of aboveground and soil carbon and nitrogen stocks and cycling of available nitrogen along a land-use gradient in Rondonia, Brazil. Ecosystems, 2002, 5: 244–259, 10.1007/s10021-001-0069-1, 1:CAS:528:DC%2BD38Xks1Olsr4%3DCrossRefGoogle Scholar
  64. 64.
    Guild L S, Kauffman J B, Ellingson L J, et al. Dynamics associated with total aboveground biomass, C, nutrient pools and biomass burning of primary forest and pasture in Rondonia during SCAR-B. J Geophys Res, 1998, 103: 32091–32100, 10.1029/98JD00523CrossRefGoogle Scholar
  65. 65.
    Saldarriaga J G, West D C, Tharp M L, et al. Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. J Ecol, 1988, 76: 938–958, 10.2307/2260625CrossRefGoogle Scholar
  66. 66.
    Chave J, Riera B, Dubois M A. Estimation of biomass in a neotropical forest in French Guiana: spatial and temporal variability. J Trop Ecol, 2001, 17: 79–96, 10.1017/S0266467401001055CrossRefGoogle Scholar
  67. 67.
    Cummings D L, Kauffman J B, Perry D L, et al. Aboveground biomass and structure of rainforests in the Southwestern Brazilian Amazon. For Ecol Manag, 2002, 163: 293–307, 10.1016/S0378-1127(01)00587-4CrossRefGoogle Scholar
  68. 68.
    Ferreira L V, Prance G T. Species richness and floristic composition four hectares in the Jau? National Park in upland forests in Central Amazonia. Biodivers Conserv, 1998, 7: 1349–1364, 10.1023/A:1008899900654CrossRefGoogle Scholar
  69. 69.
    Pitman N C A, Terborgh J W, Silman M R, et al. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology, 2001, 82: 2101–2117, 10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2CrossRefGoogle Scholar
  70. 70.
    Nebel G, Kvist L P, Vanclay J K, et al. Structure and floristic composition of flood plain forests in the Peruvian Amazon. I Overstorey. For Ecol Manag, 2001, 150: 27–57, 10.1016/S0378-1127(00)00680-0CrossRefGoogle Scholar
  71. 71.
    Brown S, Iverson L R, Prasad A, et al. Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto Int, 1993, 4: 45–59, 10.1080/10106049309354429CrossRefGoogle Scholar
  72. 72.
    Hoshizaki K, Niiyama K, Kimura K, et al. Temporal and spatial variation of forest biomass in relation to stand dynamics in a mature, lowland tropical rainforest, Malaysia. Ecol Res, 2004, 19: 357–363, 10.1111/j.1440-1703.2004.00645.xCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • DeXiang Chen
    • 1
    Email author
  • YiDe Li
    • 1
  • HePing Liu
    • 2
  • Han Xu
    • 1
  • WenFa Xiao
    • 3
  • TuShou Luo
    • 1
  • Zhang Zhou
    • 4
  • MingXian Lin
    • 1
  1. 1.Research Institute of Tropical ForestryChinese Academy of ForestryGuangzhouChina
  2. 2.Department of Physics, Atmospheric Science and GeoscienceJackson State UniversityJacksonUSA
  3. 3.Research Institute of Forest Ecology, Environment and ProtectionChinese Academy of ForestryBeijingChina
  4. 4.Department of Ecology, College of Urban and Environmental SciencesPeking UniversityBeijingChina

Personalised recommendations