Science China Life Sciences

, Volume 53, Issue 6, pp 729–737 | Cite as

Effect of rainfall interannual variability on the biomass and soil water distribution in a semiarid shrub community

  • JunShan Liu
  • Xia Xu
  • Yong Zhang
  • YuQiang Tian
  • Qiong Gao
Research Papers
  • 48 Downloads

Abstract

The dynamics of biomass and soil moisture in semiarid land is driven by both the current rainfall and the ecosystem memory. Based on a meta-analysis of existing experiments, an ecosystem model was used to calculate the effect of the rainfall interannual variability on the pattern of biomass and soil moisture in a shrub community. It was found that rainfall interannual variability enabled shrubs to be more competitive than grasses, and to maintain the dominant role over a longer time. The rainfall interannual variability resulted in complex soil moisture dynamics. The soil water recharge in wet years alternated with discharge in drought years.

Keywords

rainfall shrub community Artemisia ordosica ecosystem model ecohydrology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Noy-Meir I. Desert ecosystems: environment and producers. Annu Rev Ecol Sys, 1973, 4:25–51 10.1146/annurev.es.04.110173.000325CrossRefGoogle Scholar
  2. 2.
    Schwinning S, Sala O E, Loik M E, et al. Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia, 2004, 141:191–193 15300489PubMedCrossRefGoogle Scholar
  3. 3.
    Reynolds J F, Kemp P R, Ogle K, et al. Modifying the “pulsereserve” paradigm for deserts of North America: Precipitation pulses, soil water, and plant responses. Oecologia, 2004, 141:194–210 10.1007/s00442-004-1524-4, 15042457PubMedCrossRefGoogle Scholar
  4. 4.
    Ogle K, Reynolds J F. Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia, 2004, 141:282–294 10.1007/s00442-004-1507-5, 15007725PubMedCrossRefGoogle Scholar
  5. 5.
    Loik M E, Breshears D D, Lauenroth W K, et al. A multiscale perspective of water pulses in dryland ecosystems: Climatology and ecohydrology of the western USA. Oecologia, 2004, 141:269–281 10.1007/s00442-004-1570-y, 15138879PubMedCrossRefGoogle Scholar
  6. 6.
    Ludwig J A, Wilcox B P, Breshears D D, et al. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 2005, 86:288–297 10.1890/03-0569CrossRefGoogle Scholar
  7. 7.
    Le Houérou H N, Bingham R L, Skerbek W. Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. J Arid Environ, 1988, 15:1–18Google Scholar
  8. 8.
    Knapp A K, Fay P A, Blair J M, et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 2002, 298:2202–2205 10.1126/science.1076347, 12481139, 1:CAS:528:DC%2BD38XpsVSktLg%3DPubMedCrossRefGoogle Scholar
  9. 9.
    Schwinning S, Starr B I, Ehleringer J R. Dominant cold desert shrubs do not partition warm season precipitation by event size. Oecologia, 2003, 136:252–260 10.1007/s00442-003-1255-y, 12695904PubMedCrossRefGoogle Scholar
  10. 10.
    Sher A A, Goldberg D E, Novoplansky A. The effect of mean and variance in resource supply on survival of annuals from Mediterranean and desert environments. Oecologia, 2004, 141:353–362 10.1007/s00442-003-1435-9, 14669004PubMedCrossRefGoogle Scholar
  11. 11.
    Huxman T E, Cable J M, Ignace D D, et al. Response of net ecosystem gas exchange to a simulated precipitation pulse in a semi-arid grassland: The role of native versus grasses and soil texture. Oecologia, 2004, 141:295–305 14557868PubMedCrossRefGoogle Scholar
  12. 12.
    Huxman T E, Snyder K, Tissue D, et al. Precipitation pulses and carbon fluxes in semi-arid and arid ecosystems. Oecologia, 2004, 141:254–268 15338414PubMedCrossRefGoogle Scholar
  13. 13.
    Wiegand K, Jeltsch F, Ward D. Minimum recruitment frequency in plants with episodic recruitment. Oecologia, 2004, 141:363–372 10.1007/s00442-003-1439-5, 14666416PubMedCrossRefGoogle Scholar
  14. 14.
    Brown J H, Valone T J, Curtin C G. Reorganization of an arid ecosystem in response to recent climate change. Proc Natl Acad Sci, 1997, 94:9729–9733 10.1073/pnas.94.18.9729, 11038570, 1:CAS:528:DyaK2sXlvVWjtbc%3DPubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Snyder K A, Donovan L A, James J J, et al. Extensive summer water pulses do not necessarily lead to canopy growth of Great Basin and northern Mojave Desert shrubs. Oecologia, 2004, 141:325–334 10.1007/s00442-003-1403-4, 14576930, 1:STN:280:DC%2BD2cvmsFKqsg%3D%3DPubMedCrossRefGoogle Scholar
  16. 16.
    Gao Q, Reynolds J F. Historical shrub-grass transitions in the northern Chihuahuan Desert: Modeling the effects of shifting rainfall seasonality and event size over a landscape gradient. Global Change Biol, 2003, 9:1475–1493 10.1046/j.1365-2486.2003.00676.xCrossRefGoogle Scholar
  17. 17.
    Reynolds J F, Kemp P R, Tenhunen J D. Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: a modeling analysis. Plant Ecol, 2000, 150:145–159 10.1023/A:1026530522612CrossRefGoogle Scholar
  18. 18.
    Huxman T E, Smith M D, Fay P A, et al. Convergence across biomes to a common rain-use efficiency. Nature, 2004, 429:651–654 10.1038/nature02561, 15190350, 1:CAS:528:DC%2BD2cXks1Kls7k%3DPubMedCrossRefGoogle Scholar
  19. 19.
    Muldavin E H, Moore D I, Collins S L, et al. Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem. Oecologia, 2008, 155:123–132 10.1007/s00442-007-0880-2, 17968592PubMedCrossRefGoogle Scholar
  20. 20.
    Borgogno F, D’Odorico P, Laio F, et al. Effect of rainfall interannual variability on the stability and resilience of dryland plant ecosystems. Water Resour Res, 2007, 43, W06411, doi: 10.1029/2006WR005314 10.1029/2006WR005314CrossRefGoogle Scholar
  21. 21.
    Lauenroth W K, Bradford J B. Ecohydrology and the partitioning AET between transpiration and evaporation in a semiarid steppe. Ecosystems, 2006, 9:756–767 10.1007/s10021-006-0063-8CrossRefGoogle Scholar
  22. 22.
    Scanlon B R, Levitt D G, Reedy R C, et al. Ecological controls on water-cycle response to climate variability in deserts. Proc Natl Acad Sci, 2005, 102:6033–6038 10.1073/pnas.0408571102, 15837922, 1:CAS:528:DC%2BD2MXktlOktb4%3DPubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lu Z M. Study on the drought resistance of Artemisia ordosica with different ages (in Chinese). Chin Bull Bot, 1993, 10:58–59Google Scholar
  24. 24.
    Yang B Z, Dong X J, Gao Q, et al. Transpiration and water conditions of the Artemesia ordosica communities (in Chinese). Acta Phyto Sinica, 1994, 18:161–170.Google Scholar
  25. 25.
    Qiu G Y, Tomohisa Y, Kazuro M, et al. The succession of planted communities in Tengger desert in relation to root distribution and soil water status. J Arid Land Studies, 1995, 4:81–89Google Scholar
  26. 26.
    Dong X J, Zhang X S, Yang B Z. A preliminary study on the water balance for some sandland shrubs based on transpiration measurements in field conditions. Acta Phyto Sinica, 1997, 21:208–225Google Scholar
  27. 27.
    Guo K, Dong X J, Liu Z M. Characteristics of soil moisture content on sand dunes in Mu Us sandy grassland: Why Artemisia ordosica declines on old fixed sand dunes (in Chinese). Acta Phyto Sinica, 2000, 24:275–279Google Scholar
  28. 28.
    Li X R, Ma F Y, Xiao H L, et al. Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China. J Arid Environ, 2004, 57:1–16 10.1016/S0140-1963(03)00089-2CrossRefGoogle Scholar
  29. 29.
    Knapp A K, Smith M D. Variation among biomes in temporal dynamics of aboveground primary production. Science, 2001, 291:481–484 10.1126/science.291.5503.481, 11161201, 1:CAS:528:DC%2BD3MXlslensg%3D%3DPubMedCrossRefGoogle Scholar
  30. 30.
    Swemmer A M, Knapp A K, Snymen H A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J Ecol, 2007, 95:780–788 10.1111/j.1365-2745.2007.01237.xCrossRefGoogle Scholar
  31. 31.
    Zhang X S. Principles and optimal models for development of Maowusu sandy grassland (in Chinese). Acta Phyto Sinica, 1994, 18:1–16Google Scholar
  32. 32.
    Guo K. Cyclic succession of Artemisia ordosica krasch community in the Mu Us sandy grassland (in Chinese). Acta Phyto Sinica, 2000, 24:243–247Google Scholar
  33. 33.
    Ohte N, Koba K, Yoshikawa K, et al. Water utilization of natural and planted trees in the semiarid desert of Inner Mongolia, China. Ecol Appl, 2003, 13:337–351 10.1890/1051-0761(2003)013[0337:WUONAP]2.0.CO;2CrossRefGoogle Scholar
  34. 34.
    Cheng X L, An S Q, Li G Q, et al. The Correlation between the desertification of grassland and the change of vegetation characteristics in Eerduosi (in Chinese). J NanJing Univ (Natural Sciences), 2001, 37:232–239Google Scholar
  35. 35.
    Ogle K, Reynolds J F. Desert dogma revisited: Coupling of stomatal conductance and photosynthesis in the desert shrub, Larrea tridentata. Plant Cell Environ, 2002, 25:909–922 10.1046/j.1365-3040.2002.00876.xCrossRefGoogle Scholar
  36. 36.
    Kemp P R, Reynolds J F, Virginia R A, et al. Decomposition of leaf and root litter of Chihuahuan Desert shrubs: effects of three years of summer drought. J Arid Environ, 2003, 53:21–39 10.1006/jare.2002.1025CrossRefGoogle Scholar
  37. 37.
    Kemp P R, Reynolds J F, Pachepsky Y, et al. A comparative modeling study of soil water dynamics in a desert ecosystem. Water Resour Res, 1997, 33:73–90 10.1029/96WR03015CrossRefGoogle Scholar
  38. 38.
    Gao Q, Zhao P, Zeng X, et al. A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. Plant Cell Environ, 2002, 25:1373–1381 10.1046/j.1365-3040.2002.00926.xCrossRefGoogle Scholar
  39. 39.
    Liu J S, Gao Q, Guo K, et al. Actual evaporation of bare sand dune in Maowusu and its response to the precipitation pattern. J Plant Ecol (Chinese Version), 2008, 32:123–132 1:CAS:528:DC%2BD1cXls1yjsrk%3DGoogle Scholar
  40. 40.
    Wang Q S, Li B. Preliminary study on biomass of Artemisia ordosica community in Ordos plateau sandland of China (in Chinese). Acta Phyto Sinica, 1994, 18:347–353Google Scholar
  41. 41.
    Wang Q S, Dong X J, Chen X D, et al. Study on some features of Artemisia ordosica community at the different successional stages (in Chinese). Acta Phyto Sinica, 1997, 21:531–538Google Scholar
  42. 42.
    Cheng X L, An S Q, Chen X L, et al. The correlation between the desertification of grassland and the change of vegetation biomass in Erduosi (in Chinese). Scientia Silvae Sinicae, 2001, 37:13–20Google Scholar
  43. 43.
    Li X R, Xiao H L, Zhang J G, et al. Long-Term Ecosystem Effects of Sand-Binding Vegetation in the Tengger Desert, Northern China. Restor Ecol, 2004, 12:376–390 10.1111/j.1061-2971.2004.00313.xCrossRefGoogle Scholar
  44. 44.
    Sala O E, Lauenroth W K, Golluscio R A. Plant functional types in temperate arid regions. In: Smith T, Shugart H H, Woodward F I, eds. Plant Functional types. Cambridge: Cambridge University Press, 1997. 217–233Google Scholar
  45. 45.
    D’Odorico P, Laio F, Ridolfi L. Noise-induced stability in dryland plant ecosystems. Proc Natl Acad Sci, 2005, 102:10819–10822 10.1073/pnas.0502884102, 16043699, 1:CAS:528:DC%2BD2MXnvVWjsb4%3DPubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    D’Odorico P, Laio F, Ridolfi L. Vegetation patterns induced by random climate fluctuations. Geophys Res Lett, 2006, 33, L19404, doi: 10.1029/2006GL027499 10.1029/2006GL027499CrossRefGoogle Scholar
  47. 47.
    Hu X L, Zhang W J, Fan W Y, et al. Studies on the characteristics of soil moisture under Artemisia community in different coverage in the Maowusu sandy land (in Chinese). Inn Mong For Sci Tech, 1996, 3:32–37Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • JunShan Liu
    • 1
  • Xia Xu
    • 1
  • Yong Zhang
    • 1
  • YuQiang Tian
    • 1
  • Qiong Gao
    • 1
  1. 1.State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Resources Science & TechnologyBeijing Normal UniversityBeijingChina

Personalised recommendations