Science China Life Sciences

, Volume 53, Issue 5, pp 598–605

Caveolin-1 gene silencing promotes the activation of PI3K/AKT dependent on Erα36 and the transformation of MCF10ACE

  • Shuang Feng
  • Yang Wang
  • Xi Wang
  • ZhaoYi Wang
  • YuYing Cui
  • Jing Liu
  • ChunHui Zhao
  • Mei Jin
  • Wei Zou
Research Papers

Abstract

ERα36, a variant of estrogen receptor-α, acts as a dominant-negative factor in both estrogen-dependent and estrogenindependent transactivation signaling pathways, and is a key factor in the promotion, progression and prognosis of breast cancers. Caveolin-1, a 22- to 24-kD integral membrane protein, may function as a tumor suppressor in inhibiting of many growth-promoting signaling pathways. It was shown that downregulation of Caveolin-1 strengthens the interaction of ERα and Caveolin-1. In conclusion, Caveolin-1 gene silencing activated the PI3K/AKT signaling pathway in an ERα36-dependent way. Our finding may provide a promising therapeutic target of breast cancer.

Keywords

Caveolin-1 Estrogen receptor PI3K/AKT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glass A G, Carreon J D, Hoover R N, et al. Breast cancer incidence, 1980–2006: Combined roles of menopausal hormone therapy, screening mammography, and estrogen receptor status. J Natl Cancer Inst, 2007, 99: 1152–1161 10.1093/jnci/djm059, 17652280PubMedCrossRefGoogle Scholar
  2. 2.
    Ravdin P M, Cronin K A, Berry D A, et al. The decrease in breast-cancer incidence in 2003 in the United States. N Engl J Med, 2007, 356: 1670–1674 10.1056/NEJMsr070105, 1:CAS:528:DC%2BD2sXksFCltL0%3D, 17442911PubMedCrossRefGoogle Scholar
  3. 3.
    Gregory A G, Patrice M C, Eric J S, et al. The Class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into caveolae. J Biol Chem, 1999, 17: 12043–12048Google Scholar
  4. 4.
    Hino M, Doihara H, Shimizu N, et al. Caveolin-1 as tumor suppressor gene in breast cancer. Surg Today, 2003, 33: 486–490 1:CAS:528:DC%2BD3sXkvFyjsL8%3D, 14506991PubMedGoogle Scholar
  5. 5.
    Lee S W, Reimer C L, Schnitzer J E, et al. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene, 1998, 16: 1391–1397 10.1038/sj.onc.1201661, 1:CAS:528:DyaK1cXit1Cjtrw%3D, 9525738PubMedCrossRefGoogle Scholar
  6. 6.
    Fiucci G, Ravid D, Liscovitch M, et al. Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene, 2002, 21: 2365–2375 10.1038/sj.onc.1205300, 1:CAS:528:DC%2BD38XivFykurY%3D, 11948420PubMedCrossRefGoogle Scholar
  7. 7.
    Sloan E K, Stanley K L, Anderson R L, et al. Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene, 2004, 23: 7893–7897 10.1038/sj.onc.1208062, 1:CAS:528:DC%2BD2cXotl2ktbs%3D, 15334058PubMedCrossRefGoogle Scholar
  8. 8.
    Kong E H, Pike A C, Hubbard R E. Structure and mechanism of the oestrogen receptor. Biochem Soc Trans, 2003, 31(Pt 1): 56–59 1:CAS:528:DC%2BD3sXptF2ntA%3D%3D, 12546653PubMedCrossRefGoogle Scholar
  9. 9.
    Hammes S R, Levin E R. Extranuclear steroid receptors: Nature and actions. Endocr rev, 2007, 28: 726–741 10.1210/er.2007-0022, 1:CAS:528:DC%2BD1cXhtVKmu7Y%3D, 17916740PubMedCrossRefGoogle Scholar
  10. 10.
    Losel R, Wehing M. Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol, 2003, 4: 46–56 10.1038/nrm1009, 12511868PubMedCrossRefGoogle Scholar
  11. 11.
    Marquez D, Chen H W, Pietras R J, et al. Estrogen receptors in membrane lipid rafts and signal transduction in breast cancer. Mol Cell Endocrinol, 2006, 246: 91–100 10.1016/j.mce.2005.11.020, 1:CAS:528:DC%2BD28XhsF2gtbw%3D, 16388889PubMedCrossRefGoogle Scholar
  12. 12.
    Wang Z Y, Zhang X. Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66. Biochem Biophys Res Commun, 2005, 336: 1023–1027 10.1016/j.bbrc.2005.08.226, 1:CAS:528:DC%2BD2MXhtVKisrvN, 16165085PubMedCrossRefGoogle Scholar
  13. 13.
    Wang Z Y, Thomas F D, Thomas F D, et al. A variant of estrogen receptor-α, hER-α36: Transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci USA, 2005, 103: 9063–9068 10.1073/pnas.0603339103CrossRefGoogle Scholar
  14. 14.
    Robert C, Minetta C L, Kerrie B B, et al. Antiestrogen resistance in breast cancer and the role of estrogen receptor Signaling. Oncogene, 2003, 22: 7316–7339 10.1038/sj.onc.1206937CrossRefGoogle Scholar
  15. 15.
    Michalides R, Griekspoor A, Balkenende A, et al. Tamoxifen resistance by a conformational arrest of the estrogen receptor α after PKA activation in breast cancer. Cancer Cell, 2004, 5: 597–605 10.1016/j.ccr.2004.05.016, 1:CAS:528:DC%2BD2cXltlGgsLo%3D, 15193262PubMedCrossRefGoogle Scholar
  16. 16.
    Zou W, Mcdaneld L, Smith L M, et al. Caveolin-1 haploinsufficiency leads to partial transformation of human breast epithelial cells. Anticancer Res, 2003, 23: 4581–4586 1:CAS:528:DC%2BD2cXhvVGgtLk%3D, 14981899PubMedGoogle Scholar
  17. 17.
    Duan R, Xie W, Burghardt R C, et al. Estrogen receptor activation of the serum response element in MCF-7 cells through MAPK dependent phosphorylation of Elk-1. Biol Chem, 2001, 276: 11590–11598 10.1074/jbc.M005492200, 1:CAS:528:DC%2BD3MXjtFymu7o%3DCrossRefGoogle Scholar
  18. 18.
    Watters J J, Chun T Y, Kim Y N, et al. Estrogen modulation of prolactin gene expression requires an intact mitogenactivated protein kinase signal transduction pathway in cultured rat pituitary cells. Mol Endocrinol, 2000, 14: 1872–1881 10.1210/me.14.11.1872, 1:CAS:528:DC%2BD3cXnvVOrsL8%3D, 11075818PubMedCrossRefGoogle Scholar
  19. 19.
    Marino M, Acconcia F, Trentalance A, et al. Distinct nongenomic signal transduction pathways controlled by 17beta estradiol regulate DNA synthesis and cyclin D1 gene transcription in HepG2 cells. Mol Biol Cell, 2002, 13: 3720–3729 10.1091/mbc.E02-03-0153, 1:CAS:528:DC%2BD38XotFyrsLY%3D, 12388769PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Altucci L, Addeo R, Cicatiello L, et al. Estrogen induces early and timed activation of cyclin-dependent kinase 4, 5 and 6 and increases cyclin messenger ribonucleic acid expression in rat uterus. Endocrinology, 1997, 138: 978–984 10.1210/en.138.3.978, 1:CAS:528:DyaK2sXht1Ors7o%3D, 9048598PubMedGoogle Scholar
  21. 21.
    Yee D, Lee A V. Crosstalk between the insulin-like growth factors and estrogens in breast cancer. J Mammary Gland Biol Neoplasia, 2002, 1: 107–115Google Scholar
  22. 22.
    Anna L K, Erzsebet B, Aniko G, et al. Oestrogen- mediated tyrosine phosphorylation of caveolin-1 and its effect on the oestrogen receptor localization: An in vivo study. Mol Cell Endocrinol, 2005, 245: 128–137 10.1016/j.mce.2005.11.005CrossRefGoogle Scholar
  23. 23.
    Wayne Z, Lillian M S, Amato G. Caveolin 1-mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide. Mol Cell Biol, 2000, 20: 1507–1514 10.1128/MCB.20.5.1507-1514.2000CrossRefGoogle Scholar
  24. 24.
    Lee S W, Reimer C L, Schnitzer J E, et al. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene, 1998, 16, 1391–1397 10.1038/sj.onc.1201661, 1:CAS:528:DyaK1cXit1Cjtrw%3D, 9525738PubMedCrossRefGoogle Scholar
  25. 25.
    Hurlstone A F, Reid G, Black D M, et al. Analysis of the Caveolin-1 gene at human chromosome 7q31.1 in primary tumours and tumour-derived cell lines. Oncogene, 1999, 18, 1881–1890 10.1038/sj.onc.1202491, 1:CAS:528:DyaK1MXit1ertb4%3D, 10086342PubMedCrossRefGoogle Scholar
  26. 26.
    Fiucci G, Ravid D, Reich R, et al. Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene, 2002, 21, 2365–2375 10.1038/sj.onc.1205300, 1:CAS:528:DC%2BD38XivFykurY%3D, 11948420PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang X T, Shen P, Zou W, et al. Caveolin-1 down-regulation activates estrogen receptor alpha expression and leads to 17β-estradiol-stimulated mammary tumorigenesis. Anticancer Res, 2005, 25: 369–375 15816560PubMedGoogle Scholar
  28. 28.
    Razandi M, Pedram A, Ellis R L, et al. ERs associate with and regulate the production of caveolin: Implications for signaling and cellular actions. Mol Endocrinol, 2002,16: 100–115 10.1210/me.16.1.100, 1:CAS:528:DC%2BD38XhvVCiuw%3D%3D, 11773442PubMedCrossRefGoogle Scholar
  29. 29.
    Tang S, Wen G B. Membrane initiated estrogen signaling pathway in breast cancer. Int Path Clin Med, 2008, 5: 429–431Google Scholar
  30. 30.
    Lee Y R, So M C, Jung S H, et al. Upregulation of PI3K/Akt signaling by 17beta-estradiol through activation of estrogen receptoralpha, but not estrogen receptor-beta, and stimulates cell growth in breast cancer cells. Biochem Biophys Res, 2005, 336: 1221–1226 10.1016/j.bbrc.2005.08.256, 1:CAS:528:DC%2BD2MXhtVKisrnFCrossRefGoogle Scholar
  31. 31.
    Sun M, Paciga J E, Cheng J Q, et al. Phosphatidylinositol-3-OH kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res, 2001, 61: 5985–5991 1:CAS:528:DC%2BD3MXmt12ktr0%3D, 11507039PubMedGoogle Scholar
  32. 32.
    Kirkegaard T, Witton C J, Bartlett J M, et al. AKT activation predicts outcome in breast cancer patients treated with tamoxifen. Pathol, 2005, 207: 139–146 10.1002/path.1829, 1:CAS:528:DC%2BD2MXhtFKnsr7PGoogle Scholar
  33. 33.
    Le L, Xiu Y H, Manijeh P. Tamoxifen and ICI 182,780 increase Bcl-2 levels and inhibit growth of breast carcinoma cells by modulating PI3K/AKT, ERK and IGF-1R pathways independent of ERa. Breast Cancer Res Treat, 2008, 11: 605–621Google Scholar
  34. 34.
    Ripple M O, Kalmadi S, Eastman A. Inhibition of either phosphatidylinositol 3-kinase/Akt or the mitogen/extracellular regulated kinase, MEK/ERK, signaling pathways suppress growth of breast cancer cell lines, but MEK/ERK signaling is critical for cell survival. Breast Cancer Res Treat, 2005, 93: 177–188 10.1007/s10549-005-4794-6, 1:CAS:528:DC%2BD2MXhtVektLbO, 16187238PubMedCrossRefGoogle Scholar
  35. 35.
    Beeram M, Tan Q T, Middleton A, et al. Akt induced endocrine therapy resistance is reversed by inhibition of mTOR signaling. Ann Oncol, 2007, 18: 1323–1328 10.1093/annonc/mdm170, 1:STN:280:DC%2BD2srptlyhtQ%3D%3D, 17693645PubMedCrossRefGoogle Scholar
  36. 36.
    Santen R J, Song R X, Yue W, et al. The role of mitogen-activated protein (MAP) kinase in breast cancer. Steroid Biochem Mol Biol, 2002, 80: 239–256 10.1016/S0960-0760(01)00189-3, 1:CAS:528:DC%2BD38XhvVCiurw%3DCrossRefGoogle Scholar
  37. 37.
    Ripple M O, Kalmadi S, Eastman A. Inhibition of either phosphatidylinositol 3-kinase/Akt or the mitogen/extracellular regulated kinase, MEK/ERK, signaling pathways suppress growth of breast cancer cell lines, but MEK/ERK signaling is critical for cell survival. Breast Cancer Res Treat, 2005, 93: 177–188 10.1007/s10549-005-4794-6, 1:CAS:528:DC%2BD2MXhtVektLbO, 16187238PubMedCrossRefGoogle Scholar
  38. 38.
    Song R X, Fan P, Santen R J. Role of receptor complexes in the extranuclear actions of estrogen receptor alpha in breast cancer. Endocr Relat Cancer, 2006, 13: S3–S13 10.1677/erc.1.01322, 1:CAS:528:DC%2BD2sXivF2mtLg%3D, 17259556PubMedCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shuang Feng
    • 1
  • Yang Wang
    • 1
  • Xi Wang
    • 1
  • ZhaoYi Wang
    • 3
  • YuYing Cui
    • 1
  • Jing Liu
    • 4
  • ChunHui Zhao
    • 1
  • Mei Jin
    • 1
    • 2
  • Wei Zou
    • 1
    • 2
  1. 1.College of Life ScienceLiaoning Normal UniversityDalianChina
  2. 2.Liaoning Key Laboratory of Biotechnology and Molecular Drug R&DDalianChina
  3. 3.Cancer CenterCreighton UniversityOmahaUSA
  4. 4.First Clinical Hospital of Dalian Medical UniversityDalianChina

Personalised recommendations