Science China Life Sciences

, Volume 53, Issue 4, pp 401–408 | Cite as

Integration mechanisms of transgenes and population fitness of GH transgenic fish

Special Topic

Abstract

It has been more than 20 years since the first batch of transgenic fish was produced. Five stable germ-line transmitted growth hormone (GH) transgenic fish lines have been generated. This paper reviews the mechanisms of integration and gene targeting of the transgene, as well as the viability, reproduction and transgenic approaches for the reproductive containment of GH-transgenic fish. Further, we propose that it should be necessary to do the following studies, in particularly, of the breeding of transgenic fish: to assess the fitness of transgenic fish in an aqueous environment with a large space and a complex structure; and to develop a controllable on-off strategy of reproduction in transgenic fish.

Keywords

transgene integration mechanism GH transgenic fish population fitness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu Z, Li G, He L, et al. Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus). J Appl Ichthyol, 1985, 1: 31–34 10.1111/j.1439-0426.1985.tb00408.x, 1:CAS:528:DyaL2MXltFOnsL0%3DCrossRefGoogle Scholar
  2. 2.
    Wang Y, Hu W, Wu G, et al. Genetic analysis of ‘all-fish’ growth hormone gene transferred carp (Cyprinus carpio L.) and its F1 generation. Chinese Sci Bull, 2001, 46: 1174–1177 1:CAS:528:DC%2BD3MXmtVSqsrY%3DGoogle Scholar
  3. 3.
    Devlin R H, Biagi C A, Yesaki T Y. Growth, viability and genetic characteristics of GH transgenic Coho salmon strains. Aquaculture, 2004, 236: 607–632 10.1016/j.aquaculture.2004.02.026, 1:CAS:528:DC%2BD2cXktVCitL8%3DCrossRefGoogle Scholar
  4. 4.
    Fletcher G L, Shears M A, Yaskowiak E S, et al. Gene transfer: potential to enhance the genome of Atlantic salmon for aquaculture. Aust J Exp Agric, 2004, 44: 1095–1100 10.1071/EA03223, 1:CAS:528:DC%2BD2cXhtVKrurfLCrossRefGoogle Scholar
  5. 5.
    Nam Y K, Cho Y S, Cho H J, et al. Accelerated growth performance and stable germ-line transmission in androgenetically derived homozygous transgenic mud loach, Misgurnus mizolepis. Aquaculture, 2002, 209: 257–270 10.1016/S0044-8486(01)00730-XCrossRefGoogle Scholar
  6. 6.
    Martínez R, Arenal A, Estrada M P, et al. Mendelian transmission, transgene dosage and growth phenotype in transgenic tilapia (Oreochromis hornorum) showing ectopic expression of homologous growth hormone. Aquaculture, 1999, 173: 271–283 10.1016/S0044-8486(98)00451-7CrossRefGoogle Scholar
  7. 7.
    Rahman M A, Ronyai A, Engidaw B Z, et al. Growth and nutritional trials on transgenic Nile tilapia containing an exogenous fish growth hormone gene. J Fish Biol, 2001, 59: 62–78 10.1111/j.1095-8649.2001.tb02338.x, 1:CAS:528:DC%2BD3MXksF2mtLg%3DCrossRefGoogle Scholar
  8. 8.
    Hu W, Wang Y, Zhu Z. Progress in the evaluation of transgenic fish for possible ecological risk and its containment strategies. Sci China C-Life Sci, 2007, 50: 573–579 10.1007/s11427-007-0089-y, 1:CAS:528:DC%2BD2sXhsVGgtbbN, 17879053PubMedCrossRefGoogle Scholar
  9. 9.
    Zeng Z Q, Zhu Z Y. The molecular polymorphism of transgenes in F4 generation red carp transfected with pMThGH gene. Chinese Sci Bull, 2000, 45: 1957–1962Google Scholar
  10. 10.
    Wu B, Sun Y H, Wang Y W, et al. Characterization of transgene integration pattern in F4 hGH-transgenic common carp (Cyprinus carpio). Cell Res, 2005, 15: 447–454 10.1038/sj.cr.7290313, 1:CAS:528:DC%2BD2MXhtFWmt77P, 15987603PubMedCrossRefGoogle Scholar
  11. 11.
    Dorer D R. Do transgene arrays form heterochromatin in vertebrates? Transgenic Res, 1997, 6: 3–10 10.1023/A:1018460413680, 1:CAS:528:DyaK2sXotFehug%3D%3D, 9032972PubMedCrossRefGoogle Scholar
  12. 12.
    Martin D I K, Whitelaw E. The vagaries of variegating transgenes. BioEssays, 1996, 18: 919–923 10.1002/bies.950181111, 1:STN:280:DyaK2s%2FptlGjug%3D%3D, 8939070PubMedCrossRefGoogle Scholar
  13. 13.
    Garrick D, Fiering S, Martin D I, et al. Repeat-induced gene silencing in mammals. Nat Genet, 1998, 18: 56–59 10.1038/ng0198-56, 1:CAS:528:DyaK1cXivFChsQ%3D%3D, 9425901PubMedCrossRefGoogle Scholar
  14. 14.
    Fan L, Moon J, Crodian J, et al. Homologous recombination in zebrafish ES cells. Transgenic Res, 2006, 15: 21–30 10.1007/s11248-005-3225-0, 1:CAS:528:DC%2BD28XhtlSqtrg%3D, 16475007PubMedCrossRefGoogle Scholar
  15. 15.
    Chen S, Hong Y, Schartl M. Development of a positive-negative selection procedure for gene targeting in fish cells. Aquaculture, 2002, 214: 67–79 10.1016/S0044-8486(01)00811-0, 1:CAS:528:DC%2BD38XnsF2rs7g%3DCrossRefGoogle Scholar
  16. 16.
    Wu Y, Zhang G, Xiong Q, et al. Integration of double-fluorescence expression vectors into zebrafish genome for the selection of site-directed knockout/knockin. Mar Biotechnol, 2006, 8: 304–311 10.1007/s10126-006-5116-7, 1:CAS:528:DC%2BD28XlsV2lu7s%3D, 16501876PubMedCrossRefGoogle Scholar
  17. 17.
    Liu W Y, Wang Y, Qin Y, et al. Site-directed gene integration in transgenic zebrafish mediated by Cre recombinase using a combination of mutant Lox sites. Mar Biotechnol, 2007, 9: 420–428 10.1007/s10126-007-9000-x, 1:CAS:528:DC%2BD2sXhtVynurzK, 17503154PubMedCrossRefGoogle Scholar
  18. 18.
    Doyon Y, McCammon J M, Miller J C, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotech, 2008, 26: 702–708 10.1038/nbt1409, 1:CAS:528:DC%2BD1cXmvVCis7g%3DCrossRefGoogle Scholar
  19. 19.
    Meng X, Noyes M B, Zhu L J, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotech, 2008, 26: 695–701 10.1038/nbt1398, 1:CAS:528:DC%2BD1cXmvVCju7o%3DCrossRefGoogle Scholar
  20. 20.
    Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA, 2000, 97: 11403–11408 10.1073/pnas.97.21.11403, 1:CAS:528:DC%2BD3cXnsF2qsr4%3D, 11027340PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kawakami K, Takeda H, Kawakami N, et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell, 2004, 7: 133–144 10.1016/j.devcel.2004.06.005, 1:CAS:528:DC%2BD2cXntVChsr8%3D, 15239961PubMedCrossRefGoogle Scholar
  22. 22.
    Urasaki A, Asakawa K, Kawakami K. Efficient transposition of the Tol2 transposable element from a single-copy donor in zebrafish. Proc Natl Acad Sci USA, 2008, 105: 19827–19832 10.1073/pnas.0810380105, 1:CAS:528:DC%2BD1cXhsFCltrvL, 19060204PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lind J, Cresswell W. Determining the fitness consequences of antipredation behavior. Behav Ecol, 2005, 16: 945–956 10.1093/beheco/ari075CrossRefGoogle Scholar
  24. 24.
    Dunham R A, Chitmanat C, Nichols A, et al. Predator avoidance of transgenic channel catfish containing salmonid growth hormone genes. Mar Biotechnol, 1999, 1: 545–551 10.1007/PL00011809, 1:CAS:528:DC%2BD3cXktFCisw%3D%3D, 10612679PubMedCrossRefGoogle Scholar
  25. 25.
    Abrahams M V, Sutterlin A. The foraging and antipredator behaviour of growth-enhanced transgenic Atlantic salmon. Anim Behav, 1999, 58: 933–942 10.1006/anbe.1999.1229, 10564595PubMedCrossRefGoogle Scholar
  26. 26.
    Sundström L F, Devlin R H, Johnsson J I, et al. Vertical position reflects Increased feeding motivation in growth hormone transgenic Coho salmon (Oncorhynchus kisutch). Ethology, 2003, 109: 701–712 10.1046/j.1439-0310.2003.00908.xCrossRefGoogle Scholar
  27. 27.
    Videler J J. Fish Swimming. London: Chapman and Hall, 1993CrossRefGoogle Scholar
  28. 28.
    Swanson C, Young P S, Cech Jr J C. Swimming performance of delta smelt: maximum performance, and behavioral and kinematic limitations on swimming at submaximal velocities. J Exp Biol, 1998, 201: 333–345 9427668PubMedGoogle Scholar
  29. 29.
    Li D, Fu C, Hu W, et al. Rapid growth cost in “all-fish” growth hormone gene transgenic carp: Reduced critical swimming speed. Chinese Sci Bull, 2007, 52: 1501–1506 10.1007/s11434-007-0217-x, 1:CAS:528:DC%2BD2sXnsVCjsbg%3DCrossRefGoogle Scholar
  30. 30.
    Anthony P, Farrell W B, Devlin R H. Growth-enhanced transgenic salmon can be inferior swimmers. Can J Zool, 1997, 75: 335–337 10.1139/z97-043CrossRefGoogle Scholar
  31. 31.
    Lee C G, Devlin R H, Farrell A P. Swimming performance, oxygen consumption and excess post-exercise oxygen consumption in adult transgenic and ocean-ranched Coho salmon. J Fish Biol, 2003, 62: 753–766 10.1046/j.1095-8649.2003.00057.xCrossRefGoogle Scholar
  32. 32.
    Devlin R H, Johnsson J I, Smailus D E, et al. Increased ability to compete for food by growth hormone-transgenic coho salmon Oncorhynchus kisutch. Aquac Res, 1999, 30: 479–482 10.1046/j.1365-2109.1999.00359.xCrossRefGoogle Scholar
  33. 33.
    Stevens E D, Devlin R H. Gut size in GH transgenic coho salmon is enhanced by both the GH transgene and increased food intake. J Fish Biol, 2005, 66: 1633–1648 10.1111/j.0022-1112.2005.00707.xCrossRefGoogle Scholar
  34. 34.
    Don Stevens E, Sutterlin A. Gill Morphometry in growth hormone transgenic Atlantic salmon. Environ Bio Fishes, 1999, 54: 405–411 10.1023/A:1007574308129CrossRefGoogle Scholar
  35. 35.
    Seiler S M, Keeley E R. Morphological and swimming stamina differences between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri), rainbow trout (Oncorhynchus mykiss), and their hybrids. Can J Fish Aquat Sci, 2007, 64: 127–135 10.1139/F06-175CrossRefGoogle Scholar
  36. 36.
    Ostenfeld T H, McLean E, Devlin R H. Transgenesis changes body and head shape in Pacific salmon. J Fish Biol, 1998, 52: 850–854 10.1111/j.1095-8649.1998.tb00825.xCrossRefGoogle Scholar
  37. 37.
    Li D, Hu W, Wang Y, et al. Reduced swimming abilities in fast-growing transgenic common carp Cyprinus carpio associated with their morphological variations. J Fish Biol, 2009, 74: 186–197 10.1111/j.1095-8649.2008.02128.xPubMedCrossRefGoogle Scholar
  38. 38.
    Boily P, Magnan P. Relationship between individual variation in morphological characters and swimming costs in brook charr (Salvelinus fontinalis) and yellow perch (Perca flavescens). J Exp Biol, 2002, 205: 1031–1036 11916998PubMedGoogle Scholar
  39. 39.
    Johnsson J I, Björnsson B T. Growth hormone increases growth rate, appetite and dominance in juvenile rainbow trout, Oncorhynchus mykiss. Anim Behav, 1994, 48: 177–186 10.1006/anbe.1994.1224CrossRefGoogle Scholar
  40. 40.
    Jonsson E, Johnsson J I, Bjornsson B T. Growth hormone increases predation exposure of rainbow trout. Proc R Soc B, 1996, 263: 647–651 10.1098/rspb.1996.0097, 1:STN:280:DyaK283lt12jug%3D%3D, 8677262PubMedCrossRefGoogle Scholar
  41. 41.
    Duan M, Zhang T, Hu W, et al. Elevated ability to compete for limited food resources by all-fish growth hormone transgenic common carp Cyprinus carpio. J Fish Biol, 2009, 75: 1459–1472 10.1111/j.1095-8649.2009.02393.x, 1:CAS:528:DC%2BD1MXhs1Slur7IPubMedCrossRefGoogle Scholar
  42. 42.
    Don Stevens E, Sutterlin A, Cook T. Respiratory metabolism and swimming performance in growth hormone transgenic Atlantic salmon. Can J Fish Aquat Sci, 1998, 55: 2028–2035 10.1139/cjfas-55-9-2028CrossRefGoogle Scholar
  43. 43.
    Sundstrom L F, Lohmus M, Johnsson J I, et al. Growth hormone transgenic salmon pay for growth potential with increased predation mortality. Proc Biol Sci, 2004, 271(Suppl 5): S350–352 10.1098/rsbl.2004.0189, 15504015PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Vandersteen Tymchuk W E, Abrahams M V, et al. Competitive ability and mortality of growth-enhanced transgenic coho salmon fry and parr when foraging for food. T Am Fish Soc, 2005, 134: 381–389 10.1577/T04-084.1CrossRefGoogle Scholar
  45. 45.
    Biro P A, Abrahams M V, Post J R. Direct manipulation of behaviour reveals a mechanism for variation in growth and mortality among prey populations. Anim Behav, 2007, 73: 891–896 10.1016/j.anbehav.2006.10.019CrossRefGoogle Scholar
  46. 46.
    Cook J T, McNiven M A, Richardson G F, et al. Growth rate, body composition and feed digestibility/conversion of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture, 2000, 188: 15–32 10.1016/S0044-8486(00)00331-8CrossRefGoogle Scholar
  47. 47.
    McKenzie D J, Martínez R, Morales A, et al. Effects of growth hormone transgenesis on metabolic rate, exercise performance and hypoxia tolerance in tilapia hybrids. J Fish Biol, 2003, 63: 398–409 10.1046/j.1095-8649.2003.00162.x, 1:CAS:528:DC%2BD3sXnvF2ltLc%3DCrossRefGoogle Scholar
  48. 48.
    Leggatt R A, Devlin R H, Farrell A P, et al. Oxygen uptake of growth hormone transgenic coho salmon during starvation and feeding. J Fish Biol, 2003, 62: 1053–1066 10.1046/j.1095-8649.2003.00096.x, 1:CAS:528:DC%2BD3sXls1GhsrY%3DCrossRefGoogle Scholar
  49. 49.
    Guan B, Hu W, Zhang T, et al. Metabolism traits of ‘all-fish’ growth hormone transgenic common carp (Cyprinus carpio L.). Aquaculture, 2008, 284: 217–223 10.1016/j.aquaculture.2008.06.028, 1:CAS:528:DC%2BD1cXht12gtb7PCrossRefGoogle Scholar
  50. 50.
    Devlin R H, Sundström L F, Muir W M. Interface of biotechnology and ecology for environmental risk assessments of transgenic fish. Trends Biotechnol, 2006, 24: 89–97 10.1016/j.tibtech.2005.12.008, 1:CAS:528:DC%2BD28XhtV2lsrs%3D, 16380181PubMedCrossRefGoogle Scholar
  51. 51.
    Muir W M, Howard R D. Possible ecological risks of transgenic organism release when transgenes affect mating success: Sexual selection and the Trojan gene hypothesis. Proc Natl Acad Sci USA, 1999, 96: 13853–13856 10.1073/pnas.96.24.13853, 1:CAS:528:DyaK1MXns1OqtL0%3D, 10570162PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Roff D A, Heibo E, Vøllestad L A. The importance of growth and mortality costs in the evolution of the optimal life history. J Evol Biol, 2006, 19: 1920–1930 10.1111/j.1420-9101.2006.01155.x, 1:STN:280:DC%2BD28ngvVejsQ%3D%3D, 17040389PubMedCrossRefGoogle Scholar
  53. 53.
    Stearns S C. The Evolution of Life Histories. New York: Oxford University Press, 1992Google Scholar
  54. 54.
    Tsikliras A, Antonopoulou E, Stergiou K. A phenotypic trade-off between previous growth and present fecundity in round sardinella Sardinella aurita. Popul Ecol, 2007, 49: 221–227 10.1007/s10144-007-0038-4CrossRefGoogle Scholar
  55. 55.
    Bessey C, Devlin R H, Liley N R, et al. Reproductive performance of growth-enhanced transgenic coho salmon. T Am Fish Soc, 2004, 133: 1205–1220 10.1577/T04-010.1CrossRefGoogle Scholar
  56. 56.
    Canosa L F, Chang J P, Peter R E. Neuroendocrine control of growth hormone in fish. Gen Compa Endocr, 2007, 151: 1–26 10.1016/j.ygcen.2006.12.010, 1:CAS:528:DC%2BD2sXitFeksr4%3DCrossRefGoogle Scholar
  57. 57.
    Degani G, Boker R, Jackson K. Growth hormone, gonad development, and steroid levels in female carp. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol, 1996, 115: 133–140 10.1016/S0742-8413(96)00079-5, 1:STN:280:DyaK1c3ivFOrsw%3D%3D, 9568360PubMedCrossRefGoogle Scholar
  58. 58.
    Blaise O, Le Bail P Y, Weil C. Permissive effect of insulin-like growth factor I (IGF-I) on gonadotropin releasing-hormone action on in vitro growth hormone release, in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A: Physiology, 1997, 116: 75–81 10.1016/S0300-9629(96)00119-3CrossRefGoogle Scholar
  59. 59.
    Yu K L, Peter R E. Changes in brain levels of gonadotropin-releasing hormone and serum levels of gonadotropin and growth hormone in goldfish during spawning. Can J Zool, 1991, 69: 182–188 10.1139/z91-028, 1:CAS:528:DyaK3MXks1yrtbs%3DCrossRefGoogle Scholar
  60. 60.
    Sarang M, Lal B. Effect of piscine GH/IGF-I on final oocyte maturation in vitro in Heteropneustes fossilis. Fish Physiol Biochem, 2005, 31: 231–233 10.1007/s10695-006-0029-y, 1:CAS:528:DC%2BD28XptF2rsbg%3D, 20035463PubMedCrossRefGoogle Scholar
  61. 61.
    Cecim M, Kerr J, Bartke A. Infertility in transgenic mice overexpressing the bovine growth hormone gene: luteal failure secondary to prolactin deficiency. Biol Reprod, 1995, 52: 1162–1166 10.1095/biolreprod52.5.1162, 1:CAS:528:DyaK2MXltVCjs7Y%3D, 7626717PubMedCrossRefGoogle Scholar
  62. 62.
    Chandrashekar V, Bartke A, Coschigano K T, et al. Pituitary and testicular function in growth hormone receptor gene knockout mice. Endocrinology, 1999, 140: 1082–1088 10.1210/en.140.3.1082, 1:CAS:528:DyaK1MXhsFCjt7w%3D, 10067829PubMedGoogle Scholar
  63. 63.
    Bachelot A, Monget P, Imbert-Bollore P, et al. Growth hormone is required for ovarian follicular growth. Endocrinology, 2002, 143: 4104–4112 10.1210/en.2002-220087, 1:CAS:528:DC%2BD38Xnt1ygt7Y%3D, 12239122PubMedCrossRefGoogle Scholar
  64. 64.
    Keene D E, Suescun M O, Bostwick M G, et al. Puberty is delayed in male growth hormone receptor gene-disrupted mice. J Androl, 2002, 23: 661–668 1:CAS:528:DC%2BD38Xns1Knsb4%3D, 12185100PubMedGoogle Scholar
  65. 65.
    Ando H, Luo Q, Koide N, et al. Effects of insulin-like growth factor I on GnRH-induced gonadotropin subunit gene expressions in masu salmon pituitary cells at different stages of sexual maturation. Gen Compa Endocr, 2006, 149: 21–29 10.1016/j.ygcen.2006.04.013, 1:CAS:528:DC%2BD28XptFSktro%3DCrossRefGoogle Scholar
  66. 66.
    Wang D-S, Jiao B, Hu C, et al. Discovery of a gonad-specific IGF subtype in teleost. Biochem Biophys Res Co, 2008, 367: 336–341 10.1016/j.bbrc.2007.12.136, 1:CAS:528:DC%2BD1cXpsFynsA%3D%3DCrossRefGoogle Scholar
  67. 67.
    Lu Y, Hu W, Zhu Z. Gene expression profiles of growth and reproduction related genes during the early development of common carp (cyprinus carpio L.). Acta Hydrobiol Sin, 2009, 33: 1126–1131 10.3724/SP.J.1035.2009.61126, 1:CAS:528:DC%2BC3cXks1ertL0%3DCrossRefGoogle Scholar
  68. 68.
    Hu W, Wang Y, Zhu Z. A perspective on fish gonad manipulation for biotechnical applications. Chinese Sci Bull, 2006, 51: 1–6 10.1007/s11434-005-1055-3, 1:CAS:528:DC%2BD28XhvFCqs7Y%3DCrossRefGoogle Scholar
  69. 69.
    Uzbekova S, Chyb J, Ferriere F, et al. Transgenic rainbow trout expressed sGnRH-antisense RNA under the control of sGnRH promoter of Atlantic salmon. J Mol Endocrinol, 2000, 25: 337–350 10.1677/jme.0.0250337, 1:CAS:528:DC%2BD3MXms1agsw%3D%3D, 11116212PubMedCrossRefGoogle Scholar
  70. 70.
    Maclean N, Molina G H A, Ashton T, et al. Reversibly-sterile fish via transgenesis. ISB News Rep, 2003, 3-5Google Scholar
  71. 71.
    Li S, Hu W, Wang Y, et al. Cloning and experssion analysis in mature individuals of salmon gonadotropin-releasing hormone (sGnRH) gene in common carp. Acta Genet Sin, 2004, 31: 1072–1081 1:CAS:528:DC%2BD2MXkslKjsrY%3D, 15552041PubMedGoogle Scholar
  72. 72.
    Li S, Hu W, Wang Y, et al. Cloning and expression analysis in mature individuals of two chicken type-II GnRH (cGnRH-II) genes in common carp (Cyprinus carpio). Sci China C Life Sci, 2004, 47: 349–358 10.1360/03yc0117, 1:CAS:528:DC%2BD2cXovFOksro%3D, 15493476PubMedCrossRefGoogle Scholar
  73. 73.
    Hu W, Li S, Tang B, et al. Antisense for gonadotropin-releasing hormone reduces gonadotropin synthesis and gonadal development in transgenic common carp (Cyprinus carpio). Aquaculture, 2007, 271: 498–506 10.1016/j.aquaculture.2007.04.075, 1:CAS:528:DC%2BD2sXhtVSgsLvECrossRefGoogle Scholar
  74. 74.
    Wong A C, Van Eenennaam A L. Transgenic approaches for the reproductive containment of genetically engineered fish. Aquaculture, 2008, 275: 1–12 10.1016/j.aquaculture.2007.12.026CrossRefGoogle Scholar
  75. 75.
    Ma X, Dong Y, Matzuk M M, et al. Targeted disruption of luteinizing hormone β-subunit leads to hypogonadism, defects in gonadal steroidogenesis, and infertility. Proc Natl Acad Sci USA, 2004, 101: 17294–17299 10.1073/pnas.0404743101, 1:CAS:528:DC%2BD2cXhtFansr7F, 15569941PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Huang W T, Hsieh J C, Chiou M J, et al. Application of RNAi technology to the inhibition of zebrafish GtHalpha, FSHbeta, and LHbeta expression and to functional analyses. Zoolog Sci, 2008, 25: 614–621 10.2108/zsj.25.614, 1:CAS:528:DC%2BD1cXhsFWksbfM, 18624572PubMedCrossRefGoogle Scholar
  77. 77.
    Wang Y, Hu W, Liu W Y, et al. Identification and characterization of a novel splice variant of gonadotropin alpha subunit in the common carp Cyprinus carpio. J Fish Biol, 2007, 71: 1082–1094 10.1111/j.1095-8649.2007.01582.x, 1:CAS:528:DC%2BD2sXhtlOlsLzLCrossRefGoogle Scholar
  78. 78.
    Ciruna B, Weidinger G, Knaut H, et al. Production of maternalzygotic mutant zebrafish by germ-line replacement. Proc Natl Acad Sci USA, 2002, 99: 14919–14924 10.1073/pnas.222459999, 1:CAS:528:DC%2BD38Xpt1yrtLs%3D, 12397179PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Slanchev K, Stebler J, de la Cueva-Méndez G, et al. Development without germ cells: The role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci USA, 2005, 102: 4074–4079 10.1073/pnas.0407475102, 1:CAS:528:DC%2BD2MXis12jtrw%3D, 15728735PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina

Personalised recommendations