Advertisement

Science China Life Sciences

, Volume 53, Issue 2, pp 183–189 | Cite as

Structural immunology of costimualtory and coinhibitory molecules

  • ShengDian WangEmail author
  • LiePing Chen
Special Topic Review

Abstract

The T cell costimulatory pathways are central to regulating immune responses, and targeting these pathways represents one of the most promising approaches for achieving immunotherapy. The molecular structures of costimulation revealed invaluable mechanistic insights underlying costimulatory receptor/ligand specificity, affinity, oligomeric state, and valency, which provided the bases for better manipulation of these signaling pathways. The incredible growth of this field led to identification of new members and unexpected interactions, revealing a complicated regulatory network of immune responses. The advances in structural biology of costimulation will promise unprecedented opportunities for furthering our understanding and therapeutic application of T cell costimulatory pathways.

Keywords

costimulatory molecules T cells molecular structure immunotherapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen L, McGowan P, Ashe S, et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J Exp Med, 1994, 179: 523–532 10.1084/jem.179.2.523, 1:CAS:528:DyaK2cXhtVCqu7w%3D, 7507508PubMedCrossRefGoogle Scholar
  2. 2.
    Lenschow D J, Walunas T L, Bluestone J A. CD28/B7 system of T cell costimulation. Annu Rev Immunol, 1996, 14: 233–258 10.1146/annurev.immunol.14.1.233, 1:CAS:528:DyaK28XitlCgtLo%3D, 8717514PubMedCrossRefGoogle Scholar
  3. 3.
    Schwartz R H. T cell anergy. Annu Rev Immunol, 2003, 21: 305–334 10.1146/annurev.immunol.21.120601.141110, 1:CAS:528:DC%2BD3sXjtF2isrs%3D, 12471050PubMedCrossRefGoogle Scholar
  4. 4.
    Harding F A, McArthur J G, Gross J A, et al. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature, 1992, 356: 607–609 10.1038/356607a0, 1:CAS:528:DyaK38Xitlentrk%3D, 1313950PubMedCrossRefGoogle Scholar
  5. 5.
    Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol, 2004, 4: 336–347 10.1038/nri1349, 1:CAS:528:DC%2BD2cXjsFChsrY%3D, 15122199PubMedCrossRefGoogle Scholar
  6. 6.
    Carreno B M, Collins M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol, 2002, 20: 29–53 10.1146/annurev.immunol.20.091101.091806, 1:CAS:528:DC%2BD38XjtlWgt7w%3D, 11861596PubMedCrossRefGoogle Scholar
  7. 7.
    Schwartz J C, Zhang X, Fedorov A A, et al. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature, 2001, 410: 604–608 10.1038/35069112, 1:CAS:528:DC%2BD3MXis1Gru7g%3D, 11279501PubMedCrossRefGoogle Scholar
  8. 8.
    Stamper C C, Zhang Y, Tobin J F, et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature, 2001, 410: 608–611 10.1038/35069118, 1:CAS:528:DC%2BD3MXis1Gru7k%3D, 11279502PubMedCrossRefGoogle Scholar
  9. 9.
    Wang S, Zhu G, Tamada K, et al. Ligand binding sites of inducible costimulator and high avidity mutants with improved function. J Exp Med, 2002, 195: 1033–1041 10.1084/jem.20011607, 1:CAS:528:DC%2BD38XivFyksb4%3D, 11956294PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zhang X, Schwartz J C, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity, 2004, 20: 337–347 10.1016/S1074-7613(04)00051-2, 1:CAS:528:DC%2BD2cXis1Kht70%3D, 15030777PubMedCrossRefGoogle Scholar
  11. 11.
    Wang S, Bajorath J, Flies D B, et al. Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction. J Exp Med, 2003, 197: 1083–1091 10.1084/jem.20021752, 1:CAS:528:DC%2BD3sXjs1ygs7o%3D, 12719480PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lin D Y, Tanaka Y, Iwasaki M, et al. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci USA, 2008, 105: 3011–3016 10.1073/pnas.0712278105, 1:CAS:528:DC%2BD1cXjtVSitr4%3D, 18287011PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lazar-Molnar E, Yan Q, Cao E, et al. Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2. Proc Natl Acad Sci USA, 2008, 105: 10483–10488 10.1073/pnas.0804453105, 1:CAS:528:DC%2BD1cXpsFKkuro%3D, 18641123PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Pentcheva-Hoang T, Egen J G, Wojnoonski K, et al. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity, 2004, 21: 401–413 10.1016/j.immuni.2004.06.017, 1:CAS:528:DC%2BD2cXotFaktL0%3D, 15357951PubMedCrossRefGoogle Scholar
  15. 15.
    Pentcheva-Hoang T, Chen L, Pardoll D M, et al. Programmed death-1 concentration at the immunological synapse is determined by ligand affinity and availability. Proc Natl Acad Sci USA, 2007, 104: 17765–17770 10.1073/pnas.0708767104, 1:CAS:528:DC%2BD2sXht12ltr3L, 17968013PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Jones E Y, Stuart D I, Walker N P. Structure of tumour necrosis factor. Nature, 1989, 338: 225–228 10.1038/338225a0, 1:CAS:528:DyaL1MXhslWms7w%3D, 2922050PubMedCrossRefGoogle Scholar
  17. 17.
    Smith C A, Farrah T, Goodwin R G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell, 1994, 76: 959–962 10.1016/0092-8674(94)90372-7, 1:CAS:528:DyaK2cXjtFKktLk%3D, 8137429PubMedCrossRefGoogle Scholar
  18. 18.
    Naismith J H, Sprang S R. Modularity in the TNF-receptor family. Trends Biochem Sci, 1998, 23: 74–79 10.1016/S0968-0004(97)01164-X, 1:STN:280:DyaK1c7pvFGiuw%3D%3D, 9538693PubMedCrossRefGoogle Scholar
  19. 19.
    Banner D W, D’Arcy A, Janes W, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell, 1993, 73: 431–445 10.1016/0092-8674(93)90132-A, 1:CAS:528:DyaK3sXkt1KnsLc%3D, 8387891PubMedCrossRefGoogle Scholar
  20. 20.
    Sharpe A H, Freeman G J. The B7-CD28 superfamily. Nat Rev Immunol, 2002, 2: 116–126 10.1038/nri727, 1:CAS:528:DC%2BD38XitFSnu7s%3D, 11910893PubMedCrossRefGoogle Scholar
  21. 21.
    Tivol E A, Borriello F, Schweitzer A N, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, 3: 541–547 10.1016/1074-7613(95)90125-6, 1:CAS:528:DyaK2MXps1Oqtrw%3D, 7584144PubMedCrossRefGoogle Scholar
  22. 22.
    Waterhouse P, Penninger J M, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995, 270: 985–988 10.1126/science.270.5238.985, 1:CAS:528:DyaK2MXptlOlurk%3D, 7481803PubMedCrossRefGoogle Scholar
  23. 23.
    Phan G Q, Yang J C, Sherry R M, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA, 2003, 100: 8372–8377 10.1073/pnas.1533209100, 1:CAS:528:DC%2BD3sXlsFGnt7c%3D, 12826605PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Linsley P S, Nadler S G. The clinical utility of inhibiting CD28- mediated costimulation. Immunol Rev, 2009, 229: 307–321 10.1111/j.1600-065X.2009.00780.x, 1:CAS:528:DC%2BD1MXhsFGls7nF, 19426230PubMedCrossRefGoogle Scholar
  25. 25.
    Lenschow D J, Zeng Y, Thistlethwaite J R, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science, 1992, 257: 789–792 10.1126/science.1323143, 1:CAS:528:DyaK38XlsVyru70%3D, 1323143PubMedCrossRefGoogle Scholar
  26. 26.
    Larsen C P, Pearson T C, Adams A B, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant, 2005, 5: 443–453 10.1111/j.1600-6143.2005.00749.x, 1:CAS:528:DC%2BD2MXivFSisb4%3D, 15707398PubMedCrossRefGoogle Scholar
  27. 27.
    Ronchese F, Hausmann B, Hubele S, et al. Mice transgenic for a soluble form of murine CTLA-4 show enhanced expansion of anti gen-specific CD4+ T cells and defective antibody production in vivo. J Exp Med, 1994, 179: 809–17. 10.1084/jem.179.3.809, 1:CAS:528:DyaK2cXhs1Wjtbo%3D, 8113677PubMedCrossRefGoogle Scholar
  28. 28.
    Linsley P S, Greene J L, Brady W, et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity, 1994, 1: 793–801 10.1016/S1074-7613(94)80021-9, 1:CAS:528:DyaK2MXislWktLo%3D, 7534620PubMedCrossRefGoogle Scholar
  29. 29.
    Peach R J, Bajorath J, Brady W, et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J Exp Med, 1994, 180: 2049–2058 10.1084/jem.180.6.2049, 1:CAS:528:DyaK2cXmsFehtrk%3D, 7964482PubMedCrossRefGoogle Scholar
  30. 30.
    Larsen C P, Pearson T C, Adams A B, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant, 2005, 5: 443–453 10.1111/j.1600-6143.2005.00749.x, 1:CAS:528:DC%2BD2MXivFSisb4%3D, 15707398PubMedCrossRefGoogle Scholar
  31. 31.
    Cardona K, Korbutt G S, Milas Z, et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med, 2006, 12: 304–306 10.1038/nm1375, 1:CAS:528:DC%2BD28XitVGntL4%3D, 16501570PubMedCrossRefGoogle Scholar
  32. 32.
    Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med, 1999, 5: 1365–1369 10.1038/70932, 1:CAS:528:DyaK1MXnvFCqt74%3D, 10581077PubMedCrossRefGoogle Scholar
  33. 33.
    Tseng S Y, Otsuji M, Gorski K, et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med, 2001, 193: 839–846 10.1084/jem.193.7.839, 1:CAS:528:DC%2BD3MXisVyhurg%3D, 11283156PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 1999, 11: 141–151 10.1016/S1074-7613(00)80089-8, 1:CAS:528:DyaK1MXlvVShsb8%3D, 10485649PubMedCrossRefGoogle Scholar
  35. 35.
    Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science, 2001, 291: 319–322 10.1126/science.291.5502.319, 1:CAS:528:DC%2BD3MXktlKlsw%3D%3D, 11209085PubMedCrossRefGoogle Scholar
  36. 36.
    Latchman Y, Wood C R, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol, 2001, 2: 261–268 10.1038/85330, 1:CAS:528:DC%2BD3MXhvVaksrc%3D, 11224527PubMedCrossRefGoogle Scholar
  37. 37.
    Freeman G J, Long A J, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med, 2000, 192: 1027–1034 10.1084/jem.192.7.1027, 1:CAS:528:DC%2BD3cXntFSlt7o%3D, 11015443PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Shin T, Kennedy G, Gorski K, et al. Cooperative B7-1/2 (CD80/CD86) and B7-DC costimulation of CD4+ T cells independent of the PD-1 receptor. J Exp Med, 2003, 198: 31–38 10.1084/jem.20030242, 1:CAS:528:DC%2BD3sXlsVeku7w%3D, 12847135PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Butte M J, Keir M E, Phamduy T B, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 2007, 27: 111–122 10.1016/j.immuni.2007.05.016, 1:CAS:528:DC%2BD2sXosFeqtrk%3D, 17629517PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Dong H, Strome S E, Salomao D R, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med, 2002, 8: 793–800 1:CAS:528:DC%2BD38Xls12msLo%3D, 12091876PubMedCrossRefGoogle Scholar
  41. 41.
    Driessens G, Kline J, Gajewski T F. Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol Rev, 2009, 229: 126–144 10.1111/j.1600-065X.2009.00771.x, 1:CAS:528:DC%2BD1MXhsFGls7jE, 19426219PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Barber D L, Wherry E J, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439: 682–687 10.1038/nature04444, 1:CAS:528:DC%2BD28XhtFyktL0%3D, 16382236PubMedCrossRefGoogle Scholar
  43. 43.
    Keir M E, Butte M J, Freeman G J, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008, 26: 677–704 10.1146/annurev.immunol.26.021607.090331, 1:CAS:528:DC%2BD1cXltlWktrY%3D, 18173375PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Center for Infection and Immunity, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of OncologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations