Advertisement

Science in China Series C: Life Sciences

, Volume 52, Issue 11, pp 1048–1054 | Cite as

Generation of fad2 transgenic mice that produce omega-6 fatty acids

  • Qing Chen
  • Qing Liu
  • ZhiFang Wu
  • ZongYi Wang
  • KeMian GouEmail author
Article

Abstract

Fatty acid desaturase-2 (FAD2) introduces a double bond in position Δ12 in oleic acid (18:1) to form linoleic acid (18:2 n-6) in higher plants and microbes. A new transgenic expression cassette, containing CMV promoter/fad2 cDNA/SV40 polyA, was constructedto produce transgenic mice. Among 63 healthy offspring, 10 founders (15.9%) integrated the cotton fad2 transgene into their genomes, as demonstrated by PCR and Southern blotting analysis. All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography. One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05) in transgenic muscles compared to their nontransgenic littermates. Moreover, it exhibited an 87% and a 9% increase (P<0.05) in arachidonic acid (20:4 n-6) in muscles and liver, compared to their nontransgenic littermates. The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.

Keywords

fatty acid desaturase FAD2 transgenic mouse oleic acid linoleic acid arachidonic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marszalek J R, Lodish H F. Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu Rev Cell Dev Biol, 2005, 21: 633–657, 10.1146/annurev.cellbio.21.122303.120624, 1:CAS:528:DC%2BD2MXhtlektbvF, 16212510CrossRefPubMedGoogle Scholar
  2. 2.
    Kang J X. The importance of omega-6/omega-3 fatty acid ratio in cell function. The gene transfer of omega-3 fatty acid desaturase. World Rev Nutr Diet, 2003, 92: 23–36, 10.1159/000073790, 1:CAS:528:DC%2BD3sXhtVWnsLjO, 14579681CrossRefPubMedGoogle Scholar
  3. 3.
    Simopoulos A P. Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr, 1991, 54: 438–463, 1:CAS:528:DyaK3MXmtVKlurw%3D, 1908631PubMedGoogle Scholar
  4. 4.
    Saeki K, Matsumoto K, Kinoshita M, et al. Functional expression of a Delta12 fatty acid desaturase gene from spinach in transgenic pigs. Proc Natl Acad Sci USA, 2004, 101: 6361–6366, 10.1073/pnas.0308111101, 1:CAS:528:DC%2BD2cXjvVyitrY%3D, 15067141CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Niemann H. Transgenic pigs expressing plant genes. Proc Natl Acad Sci USA, 2004, 101: 7211–7212, 10.1073/pnas.0402011101, 1:CAS:528:DC%2BD2cXksFaksr8%3D, 15128943CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Wang Y, An X R, Liu Q, et al. Establishment of transgenic mice integrated with gene encoding cotton omega-6 fatty acid desaturase-2. J Agri Biotechnol, 2005, 13: 207–211, 1:CAS:528:DC%2BD2MXht1akurrOGoogle Scholar
  7. 7.
    Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Mannual 3th ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press. 2001.Google Scholar
  8. 8.
    Kang J X, Wang J. A simplified method for analysis of polyunsaturated fatty acids. BMC Biochem, 2005, 6: 5, 10.1186/1471-2091-6-5, 15790399, 1:CAS:528:DC%2BD2MXksF2isrs%3DCrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Giraldo P, Montoliu L. Size matters: Use of YACs, BACs and PACs in transgenic animals. Transgenic Res, 2001, 10: 83–103, 10.1023/A:1008918913249, 1:CAS:528:DC%2BD3MXis1Kmur0%3D, 11305364CrossRefPubMedGoogle Scholar
  10. 10.
    Martinez M. Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr, 1992, 120: S129–S138, 10.1016/S0022-3476(05)81247-8, 1:CAS:528:DyaK38XisFarsLs%3D, 1532827CrossRefPubMedGoogle Scholar
  11. 11.
    Innis S M. Polyunsaturated fatty acids in human milk: An essential role in infant development. Adv Exp Med Biol, 2004, 554: 27–43, 1:CAS:528:DC%2BD2MXlvVClt7s%3D, 15384565CrossRefPubMedGoogle Scholar
  12. 12.
    Madsen L, Pedersen L M, Liaset B, et al. cAMP-dependent signaling regulates the adipogenic effect of n-6 polyunsaturated fatty acids. J Biol Chem, 2008, 283: 7196–7205, 10.1074/jbc.M707775200, 1:CAS:528:DC%2BD1cXivFyju7w%3D, 18070879CrossRefPubMedGoogle Scholar
  13. 13.
    Morimoto K C, Van Eenennaam A L, DePeters E J, et al. Endogenous production of n-3 and n-6 fatty acids in mammalian cells. J Dairy Sci, 2005, 88: 1142–1146, 1:CAS:528:DC%2BD2MXitFygtbg%3D, 15738247, 10.3168/jds.S0022-0302(05)72780-6CrossRefPubMedGoogle Scholar
  14. 14.
    Kang J X, Wang J, Wu L, et al. Transgenic mice: Fat-1 mice convert n-6 to n-3 fatty acids. Nature, 2004, 427: 504, 10.1038/427504a, 1:CAS:528:DC%2BD2cXpsFWhtA%3D%3D, 14765186CrossRefPubMedGoogle Scholar
  15. 15.
    Jia Q, Lupton J R, Smith R, et al. Reduced colitis-associated colon cancer in Fat-1 (n-3 fatty acid desaturase) transgenic mice. Cancer Res, 2008, 68: 3985–3991, 10.1158/0008-5472.CAN-07-6251, 1:CAS:528:DC%2BD1cXlvVOhsr8%3D, 18483285CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Nowak J, Weylandt K H, Habbel P, et al. Colitis-associated colon tumorigenesis is suppressed in transgenic mice rich in endogenous n-3 fatty acids. Carcinogenesis, 2007, 28: 1991–1995, 10.1093/carcin/bgm166, 1:CAS:528:DC%2BD2sXhtFWhu77J, 17634405CrossRefPubMedGoogle Scholar
  17. 17.
    Hudert C A, Weylandt K H, Lu Y, et al. Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proc Natl Acad Sci USA, 2006, 103: 11276–11281, 10.1073/pnas.0601280103, 1:CAS:528:DC%2BD28XnvVCmtrc%3D, 16847262CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Xia S, Lu Y, Wang J, et al. Melanoma growth is reduced in fat-1 transgenic mice: Impact of omega-6/omega-3 essential fatty acids. Proc Natl Acad Sci USA, 2006, 103: 12499–12504, 10.1073/pnas.0605394103, 1:CAS:528:DC%2BD28Xos1Onsrk%3D, 16888035CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Connor K M, SanGiovanni J P, Lofqvist C, et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med, 2007, 13: 868–873, 10.1038/nm1591, 1:CAS:528:DC%2BD2sXnsFWmtrw%3D, 17589522CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Lai L, Kang J X, Li R, et al. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol, 2006, 24: 435–436, 10.1038/nbt1198, 1:CAS:528:DC%2BD28Xjt1Wisb4%3D, 16565727CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Almendingen K, Hostmark A T, Fausa O, et al. Familial adenomatous polyposis patients have high levels of arachidonic acid and docosa-hexaenoic acid and low levels of linoleic acid and alpha-linolenic acid in serum phospholipids. Int. J Cancer, 2007, 120: 632–637, 10.1002/ijc.22337, 1:CAS:528:DC%2BD28XhtlGqsrfF, 17096349CrossRefPubMedGoogle Scholar
  22. 22.
    Polesel J, Talamini R, Montella M, et al. Linoleic acid, vitamin D and other nutrient intakes in the risk of non-Hodgkin lymphoma: An Italian case-control study. Ann Oncol, 2006, 17: 713–718, 10.1093/annonc/mdl054, 1:STN:280:DC%2BD287mslSrtg%3D%3D, 16556850CrossRefPubMedGoogle Scholar
  23. 23.
    Reyes N, Reyes I, Tiwari R, et al. Effect of linoleic acid on proliferation and gene expression in the breast cancer cell line T47D. Cancer Lett, 2004, 209: 25–35, 10.1016/j.canlet.2003.12.010, 1:CAS:528:DC%2BD2cXktVClurg%3D, 15145518CrossRefPubMedGoogle Scholar
  24. 24.
    Kilian M, Mautsch I, Gregor J I, et al. Influence of conjugated vs. conventional linoleic acid on liver metastasis and hepatic lipidper-oxidation in BOP-induced pancreatic cancer in Syrian hamster. Prostaglandins Leukot. Essent Fatty Acids, 2002, 67: 223–228, 10.1054/plef.2002.0422, 1:CAS:528:DC%2BD38XosVSiu7k%3DCrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Qing Chen
    • 1
  • Qing Liu
    • 2
  • ZhiFang Wu
    • 1
  • ZongYi Wang
    • 3
  • KeMian Gou
    • 1
    Email author
  1. 1.State Key Laboratory for AgrobiotechnologyChina Agricultural UniversityBeijingChina
  2. 2.Blackmountain LaboratoryCSIRO Plant IndustryCanberraAustralia
  3. 3.College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina

Personalised recommendations