Science in China Series C: Life Sciences

, Volume 52, Issue 11, pp 1081–1090 | Cite as

Metabonomic phenotype and identification of “heart blood stasis obstruction pattern” and “qi and yin deficiency pattern” of myocardial ischemia rat models

  • Bei Yan
  • JiYe A
  • HaiPing Hao
  • GuangJi WangEmail author
  • XuanXuan Zhu
  • WeiBin Zha
  • LinSheng Liu
  • EnZe Guan
  • Ying Zhang
  • ShengHua Gu
  • Qing Huang
  • YuanTing Zheng


The traditional Chinese medicine concepts of “Xinxueyuzuzheng (heart blood stasis obstruction pattern)” and “Qiyinliangxuzheng (qi and yin deficiency pattern)” for myocardial ischemia rat models were constructed in the present study. Endogenous metabolites in rat plasma were analyzed using the GC/TOF-MS-based metabonomic method. Significant metabolic differences were observed between the control and two model groups, and the three groups were distinguished clearly by pattern recognition. Compared with those of the control, the levels of hydroxyproline, threonic acid, glutamine and citric acid were strikingly up- or down-regulated in model rats. The metabolites contributing most to the classification between the two “pattern” rats were identified, such as valine, serine, threonine, ornithine, hydroxyproline, lysine, 2-hydroxybutanoic acid, 3-hydroxybutanoic acid, galactofuranose and inositol. These compounds were indicated as the potential biomarkers. The results suggested that the two “patterns” are involved in dysfunction in oxidative stress, energy metabolism and amino acid metabolism. These findings also provided the substantial foundation for exploring the scientific connotation of these two “Zhengxing (pattern types)” of myocardial ischemia, and “Bianzheng (pattern identification)”.


Metabonomics GC/TOF-MS heart blood stasis obstruction pattern qi and yin deficiency pattern myocardial ischemia rat model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang H. Traditional Chinese Medical Science (in Chinese). Beijing: Xueyuan Press, 2001Google Scholar
  2. 2.
    Li Y K. Experimental Methodology of Traditional Chinese Drug Pharmacology (in Chinese). Shanghai: Shanghai Science and Technology Press, 1991Google Scholar
  3. 3.
    Brindle J T, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabolomics. Nat Med, 2002, 8: 1439–1444, 10.1038/nm802, 1:CAS:528:DC%2BD38XptVSgtrw%3D, 12447357CrossRefPubMedGoogle Scholar
  4. 4.
    Sabatine M S, Liu E, Morrow D A, et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation, 2005, 112: 3868–3875, 10.1161/CIRCULATIONAHA.105.569137, 1:CAS:528:DC%2BD2MXhtlSqurnI, 16344383CrossRefPubMedGoogle Scholar
  5. 5.
    Denkert C, Budczies J, Kind T, et al. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res, 2006, 66: 10795–10804, 10.1158/0008-5472.CAN-06-0755, 1:CAS:528:DC%2BD2sXivVyqsLc%3D, 17108116CrossRefPubMedGoogle Scholar
  6. 6.
    Yin P, Zhao X, Li Q, et al. Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-TOF MS). J Proteome Res, 2006, 5: 2135–2143, 10.1021/pr060256p, 1:CAS:528:DC%2BD28XotV2lu7k%3D, 16944924CrossRefPubMedGoogle Scholar
  7. 7.
    Yang J, Zhao X, Liu X, et al. High performance liquid chromatography-mass spectrometry for metabonomics: potential biomarkers for acute deterioration of liver function in chronic hepatitis B. J Proteome Res, 2006, 5: 554–561, 10.1021/pr050364w, 1:CAS:528:DC%2BD28Xht1aisr8%3D, 16512670CrossRefPubMedGoogle Scholar
  8. 8.
    Chen M, Zhao L, Jia W. Metabonomic study on the biochemical profiles of a hydrocortisone-induced animal model. J Proteome Res, 2005, 4: 2391–2396, 10.1021/pr050158o, 1:CAS:528:DC%2BD2MXhtVGqsrfJ, 16335992CrossRefPubMedGoogle Scholar
  9. 9.
    Wang C, Kong H, Guan Y, et al. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem, 2005, 77: 4108–4116, 10.1021/ac0481001, 1:CAS:528:DC%2BD2MXktF2ks7s%3D, 15987116CrossRefPubMedGoogle Scholar
  10. 10.
    Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA, 2008, 105: 2117–2122, 10.1073/pnas.0712038105, 1:CAS:528:DC%2BD1cXitl2ls78%3D, 18252821CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Luo G H, Ding J, Yue G X, et al. Metabonomic study of syndrome of liver qi stagnation and spleen deficiency in rats (in Chinese). J Chinese Integr Med, 2007, 5: 307–313, 10.3736/jcim20070315, 1:CAS:528:DC%2BD2sXmslKiur4%3DCrossRefGoogle Scholar
  12. 12.
    Li L, Wang J N, Ren J X. NMR-based metabonomics of “Qi vacuity blood stasis pattern” rat urine. Chinese Sci Bull (in Chinese), 2007, 52: 1758–1762Google Scholar
  13. 13.
    Zheng X Y. Guidance for traditional Chinese drug research (on trial). Beijing: China Medicine Technology Press, 2002Google Scholar
  14. 14.
    Qi Y F, Shi Y R, Bu D F, et al. Changes of adrenomedullin and receptor activity modifying protein 2 (RAMP2) in myocardium and aorta in rats with isoproterenol-induced myocardial ischemia. Peptides, 2003, 24: 463–468, 10.1016/S0196-9781(03)00063-9, 1:CAS:528:DC%2BD3sXjsVeqtb4%3D, 12732346CrossRefPubMedGoogle Scholar
  15. 15.
    Mao T M, Lin J H. Research on pathological models of “blood stasis” (1). J Beijing Med Univ (in Chinese), 1985, 17: 246–248Google Scholar
  16. 16.
    Zhang C, Sheng X S, Lv R, et al. Study on normalization and standar-dization of animal models with TCM “pattern” myocardial ischemia (2). Shanghai J Trad Chinese Med (in Chinese), 2003, 37: 42–45Google Scholar
  17. 17.
    A J Trygg J, Gullberg J, Johanssson A I, et al. Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem, 2005, 77: 8086–8094, 10.1021/ac051211v, 1:CAS:528:DC%2BD2MXhtFyntbfM, 16351159CrossRefPubMedGoogle Scholar
  18. 18.
    Jonsson P, Johansson A I, Gullberg J, et al. High-Throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal Chem, 2005, 77: 5635–5642, 10.1021/ac050601e, 1:CAS:528:DC%2BD2MXmvFSrsr0%3D, 16131076CrossRefPubMedGoogle Scholar
  19. 19.
    Trygg J, Lundstedt T. Chemometrics techniques for metabonomics. J Proteome Res, 2007, 6: 469–479, 10.1021/pr060594q, 1:CAS:528:DC%2BD28XhtlCit7rM, 17269704CrossRefPubMedGoogle Scholar
  20. 20.
    Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics, 1978, 20: 397–405, 10.2307/1267639CrossRefGoogle Scholar
  21. 21.
    Wu W T. Biochemistry. Beijing: People’s Medical Publishing House, 2001Google Scholar
  22. 22.
    Silva A R, Ruschel C, Helegda C, et al. Inhibition of in vitro CO2 production and lipid synthesis by 2-hydroxybutyric acid in rat brain. Braz J Med Biol Res, 2001, 34: 627–631, 1:CAS:528:DC%2BD3MXkt12gt74%3D, 11323749PubMedGoogle Scholar
  23. 23.
    Suzuki M, Suzuki M, Kitamura Y, et al. Beta-hydroxybutyrate, a cerebral function improving agent, protects rat brain against ischemic damage caused by permanent and transient focal cerebral ischemia. Jpn J Pharmacol, 2002, 89: 36–43, 10.1254/jjp.89.36, 1:CAS:528:DC%2BD38XktFSgtrw%3D, 12083741CrossRefPubMedGoogle Scholar
  24. 24.
    Dardzinski B J, Smith S L, Towfighi J, et al. Increased plasma beta-hydroxybutyrate, preserved cerebral energy metabolism, and amelioration of brain damage during neonatal hypoxia ischemia with dexamethasone pretreatment. Pediatr Res, 2000, 48: 248–255, 10.1203/00006450-200008000-00021, 1:CAS:528:DC%2BD3cXlvVyit78%3D, 10926303CrossRefPubMedGoogle Scholar
  25. 25.
    Leeuwenburgh C, Ji L L. Glutathione depletion in rested and exercised mice: biochemical consequence and adaptation. Arch Biochem Biophys, 1995, 316: 941–949, 10.1006/abbi.1995.1125, 1:CAS:528:DyaK2MXjs1Ojs78%3D, 7864653CrossRefPubMedGoogle Scholar
  26. 26.
    Anderson M E. Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact, 1998, 111–112: 1–14, 10.1016/S0009-2797(97)00146-4, 9679538CrossRefPubMedGoogle Scholar
  27. 27.
    Thomas M, Hughes R E. A relationship between ascorbic acid and threonic acid in guinea-pigs. Food Chem Toxicol, 1983, 21: 449–452, 10.1016/0278-6915(83)90101-1, 1:CAS:528:DyaL3sXlvFemurc%3D, 6684626CrossRefPubMedGoogle Scholar
  28. 28.
    Miura D, Tanaka H, Wariishi H. Metabolomic differential display analysis of the white-rot basidiomycete Phanerochaete chrysosporium grown under air and 100% oxygen. FEMS Microbiol Lett, 2004, 234:111–116, 10.1111/j.1574-6968.2004.tb09521.x, 1:CAS:528:DC%2BD2cXjsVentrc%3D, 15109728CrossRefPubMedGoogle Scholar
  29. 29.
    Walsh N P, Blannin A K, Robson P J, et al. Glutamine, exercise and immune function. Links and possible mechanisms. Sports Med, 1998, 26: 177–191, 10.2165/00007256-199826030-00004, 1:STN:280:DyaK1M%2FhvV2rsA%3D%3D, 9802174CrossRefPubMedGoogle Scholar
  30. 30.
    Koyama K, Sato T, Omichi N, et al. Relationship between aging and hydroxyproline content of serum in human being. Ann Physiol Anthropol, 1993, 12: 243–249, 1:STN:280:DyaK3szosVKrsg%3D%3D, 8373482CrossRefPubMedGoogle Scholar
  31. 31.
    Banday A A, Farooq N, Priyamvada S, et al, Time dependent effects of gentamicin on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in rat kidney tissues. Life Sci, 2008, 82: 450–459, 10.1016/j.lfs.2007.11.014, 1:CAS:528:DC%2BD1cXitVeis74%3D, 18201728CrossRefPubMedGoogle Scholar
  32. 32.
    Omurtag G Z, Tozan A, Sehirli A O, et al, Melatonin protects against endosulfan-induced oxidative tissue damage in rats. J Pineal Res, 2008, 44: 432–438, 10.1111/j.1600-079X.2007.00546.x, 1:CAS:528:DC%2BD1cXlsVSktbk%3D, 18205731CrossRefPubMedGoogle Scholar
  33. 33.
    Kim H, McGrath B M, Silverstone P H. A review of the possible relevance of inositol and the phosphatidylinositol second messenger system (PI-cycle) to psychiatric disorders-focus on magnetic resonance spectroscopy (MRS) studies. Hum Psychopharmacol, 2005, 20: 309–326, 10.1002/hup.693, 1:CAS:528:DC%2BD2MXpvVWiu7o%3D, 15880397CrossRefPubMedGoogle Scholar
  34. 34.
    Xing Y L, Yu L Z. Mechanism of sleep deprivation and progress in traditional Chinese medicine and materia medica intervention. Pharmacol Clin Chinese Mater Med (in Chinese), 2003, 19: 47–49Google Scholar
  35. 35.
    Wang G J, Zha W B, Hao H P, et al. Metabonomics and its application prospect in TCM study. Clin J Nat Med (in Chinese), 2008, 6: 89–97, 1:CAS:528:DC%2BD1cXltlSrs74%3DCrossRefGoogle Scholar
  36. 36.
    Liu C X, Ci D Y, Wan R Z, et al. Metabonomics in research of natural drugs and traditional Chinese medicines. Clin J Nat Med (in Chinese), 2008, 6: 82–88, 1:CAS:528:DC%2BD1cXltlSrsrc%3DCrossRefGoogle Scholar
  37. 37.
    Huang Y R, Wei G L, Long H, et al. Pharmacodynamics and its biochemical mechanism of Uncaria-stem Mistura for hyperactivity syndrome by metabonomic method. Chinese Trad Herb Drugs (in Chinese), 2005, 36: 398–402Google Scholar
  38. 38.
    Zhou M M, Liu P, Jia W, et al. Evaluation of therapeutic effects of TCM based on metabolic variations. World Sci Technol / Modern Trad Chinese Med Mater Med (in Chinese), 2006, 8: 113–119Google Scholar
  39. 39.
    Wang X Y, Su M M, Qiu Y P, et al. Metabolic regulatory net-work alterations in response to acute cold stress and ginsenoside intervention. J Proteome Res, 2007, 6: 3449–3455, 10.1021/pr070051w, 1:CAS:528:DC%2BD2sXnvFOlsb0%3D, 17658780CrossRefPubMedGoogle Scholar
  40. 40.
    Li F M, Lu X M, Liu H P, et al. A pharmaco-metabonomic study on the therapeutic basis and metabolic effects of Epimedium brevicornum Maxim. on hydrocortisone-induced rat using UPLC-MS. Biomed Chromatogr, 2007, 21: 397–405, 10.1002/bmc.770, 1:CAS:528:DC%2BD2sXltFaqtL0%3D, 17236246CrossRefPubMedGoogle Scholar
  41. 41.
    Jiang N, Zhou W X, Zhang Y X. Study on the mechanism of action of Liuwei and Bawei Dihuang decoction by metabonomics. Pharmacol Clin Chinese Mater Med (in Chinese), 2007, 23: 45., 1:CAS:528:DC%2BD2sXnslKmsb8%3DGoogle Scholar
  42. 42.
    Lu Y H, Wang G J, Huang Q, et al. Investigations into metabonomic profiling of spontaneously hypertension rat (SHR) and metabolic effects of total ginsenoside on SHR using GC/MS. Chin J Nat Med (in Chinese), 2007, 11: 443–447Google Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Bei Yan
    • 1
  • JiYe A
    • 1
  • HaiPing Hao
    • 1
  • GuangJi Wang
    • 1
    Email author
  • XuanXuan Zhu
    • 2
    • 3
  • WeiBin Zha
    • 1
  • LinSheng Liu
    • 1
  • EnZe Guan
    • 3
  • Ying Zhang
    • 1
  • ShengHua Gu
    • 1
  • Qing Huang
    • 1
  • YuanTing Zheng
    • 1
  1. 1.Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
  2. 2.Pharmacological Laboratory of Clinical Research InstituteJiangsu Provincial Hospital of Traditional Chinese MedicineNanjingChina
  3. 3.College of PharmacyNanjing University of Traditional Chinese MedicineNanjingChina

Personalised recommendations