Science in China Series C: Life Sciences

, Volume 52, Issue 8, pp 693–700 | Cite as

Strigolactones are a new-defined class of plant hormones which inhibit shoot branching and mediate the interaction of plant-AM fungi and plant-parasitic weeds

  • CaiYan Chen
  • JunHuang Zou
  • ShuYing Zhang
  • David Zaitlin
  • LiHuang ZhuEmail author


Because plants are sessile organisms, the ability to adapt to a wide range of environmental conditions is critical for their survival. As a consequence, plants use hormones to regulate growth, mitigate biotic and abiotic stresses, and to communicate with other organisms. Many plant hormones function pleiotropically in vivo, and often work in tandem with other hormones that are chemically distinct. A newly-defined class of plant hormones, the strigolactones, cooperate with auxins and cytokinins to control shoot branching and the outgrowth of lateral buds. Strigolactones were originally identified as compounds that stimulated the germination of parasitic plant seeds, and were also demonstrated to induce hyphal branching in arbuscular mycorrhizal (AM) fungi. AM fungi form symbioses with higher plant roots and mainly facilitate the absorption of phosphate from the soil. Conforming to the classical definition of a plant hormone, strigolactones are produced in the roots and translocated to the shoots where they inhibit shoot outgrowth and branching. The biosynthesis of this class of compounds is regulated by soil nutrient availability, i.e. the plant will increase its production of strigolactones when the soil phosphate concentration is limited, and decrease production when phosphates are in ample supply. Strigolactones that affect plant shoot branching, AM fungal hyphal branching, and seed germination in parasitic plants facilitate chemical synthesis of similar compounds to control these and other biological processes by exogenous application.


strigolactone shoot branching AM symbioses parasitic weed 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McGurl B, Pearce G, Orozco-Cardenas M, et al. Structure, expression, and antisense inhibition of the systemin precursor gene. Science, 1992, 255: 1570–1573 1549783, 10.1126/science.1549783, 1:CAS:528:DyaK3sXhvVCltr4%3DCrossRefPubMedGoogle Scholar
  2. 2.
    McSteen P, Zhao Y. Plant hormones and signaling: Common themes and new developments. Dev Cell, 2008, 14: 467–473 18410724, 10.1016/j.devcel.2008.03.013, 1:CAS:528:DC%2BD1cXltFOisbY%3DCrossRefPubMedGoogle Scholar
  3. 3.
    Rost T L, Weier T E, Botany, an introduction to plant biology. New York: Wiley, 1979. 155–170Google Scholar
  4. 4.
    Gomez-Roldan V, Fermas S, Brewer P B, et al. Strigolactone inhibition of shoot branching. Nature, 2008, 455: 189–194 18690209, 10.1038/nature07271, 1:CAS:528:DC%2BD1cXhtV2qtLzKCrossRefPubMedGoogle Scholar
  5. 5.
    Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195–200 18690207, 10.1038/nature07272, 1:CAS:528:DC%2BD1cXhtV2qtLnECrossRefPubMedGoogle Scholar
  6. 6.
    Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005, 435: 824–827 15944706, 10.1038/nature03608, 1:CAS:528:DC%2BD2MXkvVGgsL4%3DCrossRefPubMedGoogle Scholar
  7. 7.
    Besserer A, Puech-Pages V, Kiefer P, et al. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol, 2006, 4: e226 16787107, 10.1371/journal.pbio.0040226CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bouwmeester H J, Matusova R, Zhongkui S, et al. Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol, 2003, 6: 358–364 12873531, 10.1016/S1369-5266(03)00065-7, 1:CAS:528:DC%2BD3sXlsValtb4%3DCrossRefPubMedGoogle Scholar
  9. 9.
    Klee H. Plant biology: Hormones branch out. Nature, 2008, 455: 176–177 18784710, 10.1038/455176a, 1:CAS:528:DC%2BD1cXhtV2qtLrMCrossRefPubMedGoogle Scholar
  10. 10.
    Matusova R, Rani K, Verstappen F W, et al. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol, 2005, 139: 920–934 16183851, 10.1104/pp.105.061382, 1:CAS:528:DC%2BD2MXhtFCgsb%2FICrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Akiyama K, Hayashi H. Strigolactones: Chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot (Lond), 2006, 97: 925–931 10.1093/aob/mcl063, 1:CAS:528:DC%2BD28XovFyrtL4%3DCrossRefGoogle Scholar
  12. 12.
    Beveridge C A, Weller J L, Singer S R, et al. Axillary meristem development. Budding relationships between networks controlling flowering, branching, and photoperiod responsiveness. Plant Physiol, 2003, 131: 927–934 12644645, 10.1104/pp.102.017525, 1:CAS:528:DC%2BD3sXisFemtbg%3DCrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lopez-Raez J A, Charnikhova T, Gomez-Roldan V, et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol, 2008, 178: 863–874 18346111, 10.1111/j.1469-8137.2008.02406.x, 1:CAS:528:DC%2BD1cXnsFKqurs%3DCrossRefPubMedGoogle Scholar
  14. 14.
    Booker J, Auldridge M, Wills S, et al. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol, 2004, 14: 1232–1238 15268852, 10.1016/j.cub.2004.06.061, 1:CAS:528:DC%2BD2cXmtVams7s%3DCrossRefPubMedGoogle Scholar
  15. 15.
    Johnson X, Brcich T, Dun E A, et al. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol, 2006, 142: 1014–1026 16980559, 10.1104/pp.106.087676, 1:CAS:528:DC%2BD28Xht1ejurfNCrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zou J, Zhang S, Zhang W, et al. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006, 48: 687–698 17092317, 10.1111/j.1365-313X.2006.02916.x, 1:CAS:528:DC%2BD2sXmtVY%3DCrossRefPubMedGoogle Scholar
  17. 17.
    Arite T, Iwata H, Ohshima K, et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007, 51: 1019–1029 17655651, 10.1111/j.1365-313X.2007.03210.x, 1:CAS:528:DC%2BD2sXhtFKnur7ICrossRefPubMedGoogle Scholar
  18. 18.
    Snowden K C, Simkin A J, Janssen B J, et al. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell, 2005, 17: 746–759 15705953, 10.1105/tpc.104.027714, 1:CAS:528:DC%2BD2MXis1ygtr0%3DCrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sorefan K, Booker J, Haurogne K, et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev, 2003, 17: 1469–1474 12815068, 10.1101/gad.256603, 1:CAS:528:DC%2BD3sXkvFSisrk%3DCrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Booker J, Sieberer T, Wright W, et al. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell, 2005, 8: 443–449 15737939, 10.1016/j.devcel.2005.01.009, 1:CAS:528:DC%2BD2MXisFSqsrg%3DCrossRefPubMedGoogle Scholar
  21. 21.
    Mangnus E, Zwanenburg B. Tentative molecular mechanisms for germination stimulation of Striga and Orobanche seeds by strigol and its synthetic analogues. J Agricul Food Chem, 1992, 40: 1066–1070 10.1021/jf00018a032, 1:CAS:528:DyaK38XksVClurk%3DCrossRefGoogle Scholar
  22. 22.
    Leyser O. Regulation of shoot branching by auxin. Trends Plant Sci, 2003, 8: 541–545 14607099, 10.1016/j.tplants.2003.09.008, 1:CAS:528:DC%2BD3sXos1Cnsrk%3DCrossRefPubMedGoogle Scholar
  23. 23.
    Shimizu-Sato S, Mori H. Control of outgrowth and dormancy in axillary buds. Plant Physiol, 2001, 127: 1405–1413 11743082, 10.1104/pp.010841, 1:CAS:528:DC%2BD38XjtVWhtw%3D%3DCrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chatfield S P, Stirnberg P, Forde B G, et al. The hormonal regulation of axillary bud growth in Arabidopsis. Plant J, 2000, 24: 159–169 11069691, 10.1046/j.1365-313x.2000.00862.x, 1:CAS:528:DC%2BD3cXosFSrt70%3DCrossRefPubMedGoogle Scholar
  25. 25.
    Cline M G. Apical dominance. Bot Rev, 1991, 57: 318–358 10.1007/BF02858771CrossRefGoogle Scholar
  26. 26.
    Ongaro V, Leyser O. Hormonal control of shoot branching. J Exp Bot, 2008, 59: 67–74 17728300, 10.1093/jxb/erm134, 1:CAS:528:DC%2BD1cXht1Sitbw%3DCrossRefPubMedGoogle Scholar
  27. 27.
    Thimann KV, Skoog F. Studies on the growth hormone of plants: III. The inhibiting action of the growth substance on bud development. Proc Natl Acad Sci USA, 1933, 19: 714–716 16577553, 10.1073/pnas.19.7.714, 1:CAS:528:DyaA3sXltlOrtQ%3D%3DCrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shimizu-Sato S, Tanaka M, Mori H. Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol, 2008, 69: 429–435 18974937, 10.1007/s11103-008-9416-3CrossRefPubMedGoogle Scholar
  29. 29.
    Morris S E, Turnbull C G, Murfet I C, et al. Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol, 2001, 126: 1205–1213 11457970, 10.1104/pp.126.3.1205, 1:CAS:528:DC%2BD3MXlsFegur0%3DCrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Stirnberg P, van De Sande K, Leyser H M. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 2002, 129: 1131–1141 11874909, 1:CAS:528:DC%2BD38XisVWrur8%3DPubMedGoogle Scholar
  31. 31.
    Schwartz S H, Qin X, Loewen M C. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem, 2004, 279: 46940–46945 15342640, 10.1074/jbc.M409004200, 1:CAS:528:DC%2BD2cXptFejs7o%3DCrossRefPubMedGoogle Scholar
  32. 32.
    Ishikawa S, Maekawa M, Arite T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005, 46: 79–86 15659436, 10.1093/pcp/pci022, 1:CAS:528:DC%2BD2MXht1eqt7o%3DCrossRefPubMedGoogle Scholar
  33. 33.
    Bennett T, Sieberer T, Willett B, et al. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol, 2006, 16: 553–563 16546078, 10.1016/j.cub.2006.01.058, 1:CAS:528:DC%2BD28Xis1ehtL0%3DCrossRefPubMedGoogle Scholar
  34. 34.
    Lazar G, Goodman H M. MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103(2): 472–476 16387852, 10.1073/pnas.0509463102, 1:CAS:528:DC%2BD28XpsVSktg%3D%3DCrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Foo E, Morris S E, Parmenter K, et al. Feedback regulation of xylem cytokinin content is conserved in pea and Arabidopsis. Plant Physiol, 2007, 143: 1418–1428 17277096, 10.1104/pp.106.093708, 1:CAS:528:DC%2BD2sXjsVyqtrw%3DCrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Beveridge C A. Long-distance signaling and a mutational analysis of branching in pea. Plant Growth Regulation, 2000, 32: 193–200 10.1023/A:1010718020095, 1:CAS:528:DC%2BD3MXisFWmtLo%3DCrossRefGoogle Scholar
  37. 37.
    Beveridge C A, Murfet I C, Kerhoas L, et al. The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. The Plant Journal, 1997, 11: 339–345 10.1046/j.1365-313X.1997.11020339.x, 1:CAS:528:DyaK2sXitFCktbc%3DCrossRefGoogle Scholar
  38. 38.
    Gianinazzi-Pearson V. Plant Cell Responses to Arbuscular Mycorrhizal Fungi: Getting to the Roots of the Symbiosis. Plant Cell, 1996, 8: 1871–1883 12239368, 10.1105/tpc.8.10.1871CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Harrison M J. Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol, 2005, 59: 19–42 16153162, 10.1146/annurev.micro.58.030603.123749, 1:CAS:528:DC%2BD2MXht1Shs7bJCrossRefPubMedGoogle Scholar
  40. 40.
    Schüssler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research, 2001, 105: 1413–1421 10.1017/S0953756201005196CrossRefGoogle Scholar
  41. 41.
    Harrison M J. The arbuscular mycorrhizal symbiosis: An underground association. Trends Plant Sci, 1997, 2: 54–56 10.1016/S1360-1385(97)82563-0CrossRefGoogle Scholar
  42. 42.
    Brundrett M C. Coevolution of roots and mycorrhizas of land plants. New Phytol, 2002, 154: 275–304 10.1046/j.1469-8137.2002.00397.xCrossRefGoogle Scholar
  43. 43.
    Smith S E, Read D J. Mycorrhizal Symbiosis. San Diego, CA: Academic Press. 1997.Google Scholar
  44. 44.
    Liu J, Maldonado-Mendoza I, Lopez-Meyer M, et al. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J, 2007, 50: 529–544 17419842, 10.1111/j.1365-313X.2007.03069.x, 1:CAS:528:DC%2BD2sXlsVWms7Y%3DCrossRefPubMedGoogle Scholar
  45. 45.
    Pozo M J, Azcon-Aguilar C. Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol, 2007, 10: 393–398 17658291, 10.1016/j.pbi.2007.05.004, 1:CAS:528:DC%2BD2sXosFGrsbs%3DCrossRefPubMedGoogle Scholar
  46. 46.
    Ruiz-Lozano JM. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 2003, 13: 309–317 12690537, 10.1007/s00572-003-0237-6CrossRefPubMedGoogle Scholar
  47. 47.
    Heckman D S, Geiser D M, Eidell B R, et al. Molecular evidence for the early colonization of land by fungi and plants. Science, 2001, 293: 1129–1133 11498589, 10.1126/science.1061457, 1:CAS:528:DC%2BD3MXmtVWrtLk%3DCrossRefPubMedGoogle Scholar
  48. 48.
    Redecker D, Kodner R, Graham L E. Glomalean fungi from the Ordovician. Science, 2000, 289: 1920–1921 10988069, 10.1126/science.289.5486.1920, 1:CAS:528:DC%2BD3cXms1alsrk%3DCrossRefPubMedGoogle Scholar
  49. 49.
    Remy W, Taylor T N, Hass H, et al. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA, 1994, 91: 11841–11843 11607500, 10.1073/pnas.91.25.11841, 1:CAS:528:DyaK2MXisFyqsbY%3DCrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Finlay RD. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot, 2008, 59: 1115–1126 18349054, 10.1093/jxb/ern059, 1:CAS:528:DC%2BD1cXjs1Khtbc%3DCrossRefPubMedGoogle Scholar
  51. 51.
    van der Heijden MGA, Klironomos JN, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998, 396: 69–72 10.1038/23932CrossRefGoogle Scholar
  52. 52.
    Kosuta S, Chabaud M, Lougnon G, et al. A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol, 2003, 131: 952–962 12644648, 10.1104/pp.011882, 1:CAS:528:DC%2BD3sXisFemtbc%3DCrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Navazio L, Moscatiello R, Genre A, et al. A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol, 2007, 144: 673–681 17142489, 10.1104/pp.106.086959, 1:CAS:528:DC%2BD2sXmvValsbg%3DCrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Be’card G, Roux C, Sejalon-Delmas N, et al. Modulators of the development of mycorrhizal fungi with arbuscules, and uses thereof, Patent W, Editor. 2005.Google Scholar
  55. 55.
    Yoneyama K, Yoneyama K, Takeuchi Y, et al. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 2007, 225: 1031–1038 17260144, 10.1007/s00425-006-0410-1, 1:CAS:528:DC%2BD2sXhvVeis7w%3DCrossRefPubMedGoogle Scholar
  56. 56.
    McSteen P. Hormonal regulation of branching in grasses. Plant Physiol, 2009, 149: 46–55 19126694, 10.1104/pp.108.129056, 1:CAS:528:DC%2BD1MXjt1WqsL4%3DCrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Elias K S, Safir G R. Hyphal elongation of glomus fasciculatus in response to root exudates. Appl Environ Microbiol, 1987, 53: 1928–1933 16347418PubMedPubMedCentralGoogle Scholar
  58. 58.
    Nagahashi G, Douds D D Jr. Isolated root caps, border cells, and mucilage from host roots stimulate hyphal branching of the arbuscular mycorrhizal fungus, Gigaspora gigantea. Mycol Res, 2004, 108: 1079–1088 15506019, 10.1017/S0953756204000693CrossRefPubMedGoogle Scholar
  59. 59.
    Vierheilig H, Lerat S, Piche Y. Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Mycorrhiza, 2003, 13: 167–170 12836085, 10.1007/s00572-002-0219-0, 1:STN:280:DC%2BD3szgslOnug%3D%3DCrossRefPubMedGoogle Scholar
  60. 60.
    Yoneyama K, Takeuchi Y, Yokota T. Production of clover broomrape seed germination stimulants by red clover root requires nitrate but is inhibited by phosphate and ammonium. Physiol Plant, 2001, 112: 25–30 11319011, 10.1034/j.1399-3054.2001.1120104.x, 1:CAS:528:DC%2BD3MXjtlGjtL0%3DCrossRefPubMedGoogle Scholar
  61. 61.
    Southwood O R. The effect of superphosphate application, 2,4-DB and grazing on broom-rape (Orobanche minor) in a subterranean clover pasture. Weed Res, 1971, 11: 240–246 10.1111/j.1365-3180.1971.tb01006.x, 1:CAS:528:DyaE38XhtlKksLY%3DCrossRefGoogle Scholar
  62. 62.
    Gworgwor N A, Weber H C. Arbuscular mycorrhizal fungi-parasitehost interaction for the control of Striga hermonthica (Del.) Benth. in sorghum [Sorghum bicolor (L.) Moench]. Mycorrhiza, 2003, 13: 277–281 12712374, 10.1007/s00572-003-0238-5CrossRefPubMedGoogle Scholar
  63. 63.
    Lendzemo V W, Kuyper T W, Kropff M J, et al. Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crops Research, 2005, 91: 51–61 10.1016/j.fcr.2004.05.003CrossRefGoogle Scholar
  64. 64.
    Bouwmeester H J, Roux C, Lopez-Raez J A, et al. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci, 2007, 12: 224–230 17416544, 10.1016/j.tplants.2007.03.009, 1:CAS:528:DC%2BD2sXlt1Sitr0%3DCrossRefPubMedGoogle Scholar
  65. 65.
    Westwood J H. Characterization of the orobanche-arabidopsis system for studying parasite-host interactions. Weed Science, 2000, 48: 742–748 10.1614/0043-1745(2000)048[0742:COTOAS]2.0.CO;2, 1:CAS:528:DC%2BD3MXhsFyhu7Y%3DCrossRefGoogle Scholar
  66. 66.
    Gutjahr C, Banba M, Croset V, et al. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell, 2008, 20: 2989–3005 19033527, 10.1105/tpc.108.062414, 1:CAS:528:DC%2BD1MXns1Gnug%3D%3DCrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Banba M, Gutjahr C, Miyao A, et al. Divergence of evolutionary ways among common sym genes: CASTOR and CCaMK show functional conservation between two symbiosis systems and constitute the root of a common signaling pathway. Plant Cell Physiol, 2008, 49: 1659–1671 18852152, 10.1093/pcp/pcn153, 1:CAS:528:DC%2BD1cXhsFSnsb7FCrossRefPubMedGoogle Scholar
  68. 68.
    Chen C, Ane J M, Zhu H. OsIPD3, an ortholog of the Medicago truncatula DMI3 interacting protein IPD3, is required for mycorrhizal symbiosis in rice. New Phytol, 2008, 180: 311–315 18761634, 10.1111/j.1469-8137.2008.02612.x, 1:CAS:528:DC%2BD1cXhtlKru7zPCrossRefPubMedGoogle Scholar
  69. 69.
    Chen C, Fan C, Gao M, et al. Antiquity and Function of CASTOR and POLLUX, the Twin Ion Channel-Encoding Genes Key to the Evolution of Root Symbioses in Plants. Plant Physiol, 2009, 149: 306–317 18978069, 10.1104/pp.108.131540, 1:CAS:528:DC%2BD1MXjt1Wqtrc%3DCrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Chen C, Gao M, Liu J, et al. Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/calmodulin-dependent protein kinase. Plant Physiol, 2007, 145: 1619–1628 17965173, 10.1104/pp.107.109876, 1:CAS:528:DC%2BD2sXhsVCntb3OCrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • CaiYan Chen
    • 1
    • 2
  • JunHuang Zou
    • 1
    • 3
  • ShuYing Zhang
    • 1
  • David Zaitlin
    • 4
  • LiHuang Zhu
    • 1
    Email author
  1. 1.State Key Laboratory of Plant Genomics & National Plant Gene Research Centre (Beijing), Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  2. 2.Department of Plant and Soil SciencesUniversity of KentuckyLexingtonUSA
  3. 3.Department of BiologyUniversity of UtahSalt Lake CityUSA
  4. 4.Kentucky Tobacco Research and Development Center (KTRDC)University of KentuckyLexingtonUSA

Personalised recommendations