Science in China Series C: Life Sciences

, Volume 52, Issue 7, pp 610–614

Cells therapy for Parkinson’s disease—so close and so far away

Special Topic Review

Abstract

One of the strategies of treating Parkinson’s disease (PD) is the replacement of lost neurons in the substantia nigra with healthy dapamingergic cells. Potential sources for cells range from autologous grafts of dopamine secreting cells, fetal ventral mesencephalon tissue, to various stem cell types. Over the past quarter century, many experimental replacement therapies have been tried on PD animal models as well as human patients, yet none resulted in satisfactory outcomes that warrant wide applications. Recent progress in stem cell biology has shown that nuclear transfer embryonic stem cells (ntES) or induced pluripotent stem cells (iPS) derived cells can be used to successfully treat rodent PD models, thus solving the problem of immunorejection and paving the way for future autologous transplantations for treating PD. Meanwhile, however, post mortem analysis of patients who received fetal brain cell transplantation revealed that implanted cells are prone to degeneration just like endogenous neurons in the same pathological area, indicating long-term efficacy of cell therapy of PD needs to overcome the degenerating environment in the brain. A better understanding of neurodegeneration in the midbrain appeared to be a necessary step in developing new cell therapies in Parkinson’s disease. It is likely that future cell replacement will focus on not only ameliorating symptoms of the disease but also trying to slow the progression of the disease by either neuroprotection or restoring the micro-environment in the midbrain.

Keywords

Parkinson’s disease dopamine neurons cell replacement transplantation stem cell fetal ventral mesencephalon carotid body embryonic stem cells nuclear transfer embryonic stem cells induced pluripotent stem cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindvall O, Brundin P, Widner H, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science, 1990, 247: 574–577, 2105529, 10.1126/science.2105529, 1:STN:280:DyaK3c7ktVOhtA%3D%3DPubMedCrossRefGoogle Scholar
  2. 2.
    Freed C R, Greene P E, Breeze R E, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med, 2001, 344: 710–719, 11236774, 10.1056/NEJM200103083441002, 1:STN:280:DC%2BD3M7ltFCisQ%3D%3DPubMedCrossRefGoogle Scholar
  3. 3.
    Olanow C W, Goetz C G, Kordower J H, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol, 2003, 54: 403–414, 12953276, 10.1002/ana.10720PubMedCrossRefGoogle Scholar
  4. 4.
    Li J Y, Englund E, Holton J L, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med, 2008, 14: 501–503, 18391963, 10.1038/nm1746, 1:CAS:528:DC%2BD1cXlsFCmsrs%3DPubMedCrossRefGoogle Scholar
  5. 5.
    Kordower J H, Chu Y, Hauser R A, et al. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med, 2008, 14: 504–506, 18391962, 10.1038/nm1747, 1:CAS:528:DC%2BD1cXlsFCmsrg%3DPubMedCrossRefGoogle Scholar
  6. 6.
    Mendez I, Vinuela A, Astradsson A, et al. Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med, 2008, 14: 507–509, 18391961, 10.1038/nm1752, 1:CAS:528:DC%2BD1cXlsFCmsrc%3DPubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Newman M B, Bakay R A. Therapeutic potentials of human embryonic stem cells in Parkinson’s disease. Neurotherapeutics, 2008, 5: 237–251, 18394566, 10.1016/j.nurt.2008.02.004, 1:CAS:528:DC%2BD1cXmtFOltLY%3DPubMedCrossRefGoogle Scholar
  8. 8.
    Bjugstad K B, Teng Y D, Redmond D E Jr, et al. Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson’s disease. Exp Neurol, 2008, 211: 362–369, 18394605, 10.1016/j.expneurol.2008.01.025, 1:CAS:528:DC%2BD1cXmtVWqsLc%3DPubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Tabar V, Tomishima M, Panagiotakos G, et al. Therapeutic cloning in individual parkinsonian mice. Nat Med, 2008, 14: 379–381, 18376409, 10.1038/nm1732, 1:CAS:528:DC%2BD1cXktl2is7Y%3DPubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 2007, 1: 39–49, 18371333, 10.1016/j.stem.2007.05.012, 1:CAS:528:DC%2BD2sXptV2rsrk%3DPubMedCrossRefGoogle Scholar
  11. 11.
    Pardal R, Ortega-Sáenz P, Durán R, et al. Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell, 2007, 131: 364–377, 17956736, 10.1016/j.cell.2007.07.043, 1:CAS:528:DC%2BD2sXht1KqsbbFPubMedCrossRefGoogle Scholar
  12. 12.
    Park H J, Lee P H, Bang O Y, et al. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J Neurochem, 2008, 107: 141–151, 18665911, 10.1111/j.1471-4159.2008.05589.x, 1:CAS:528:DC%2BD1cXht1KgtLbEPubMedCrossRefGoogle Scholar
  13. 13.
    Friling S, Andersson E, Thompson L H, et al. Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc Natl Acad Sci USA, 2009, 106: 7613–7618, 19383789, 10.1073/pnas.0902396106, 1:CAS:528:DC%2BD1MXmt1Krsr4%3DPubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Shimada H, Yoshimura N, Tsuji A, et al. Differentiation of dopaminergic neurons from human embryonic stem cells: modulation of differentiation by FGF-20. J Biosci Bioeng, 2009, 107: 447–454, 19332307, 10.1016/j.jbiosc.2008.12.013, 1:CAS:528:DC%2BD1MXntlegtL8%3DPubMedCrossRefGoogle Scholar
  15. 15.
    Lee S H, Lumelsky N, Studer L, et al. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol, 2000, 18: 675–679, 10835609, 10.1038/76536, 1:CAS:528:DC%2BD3cXktlWjs70%3DPubMedCrossRefGoogle Scholar
  16. 16.
    Bjorklund L M, Sánchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA, 2002, 99: 2344–2349, 11782534, 10.1073/pnas.022438099, 1:CAS:528:DC%2BD38XitVSrurg%3DPubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126: 663–676, 16904174, 10.1016/j.cell.2006.07.024, 1:CAS:528:DC%2BD28Xpt1aktbs%3DPubMedCrossRefGoogle Scholar
  18. 18.
    Wernig M, Zhao J P, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA, 2008, 105: 5856–5861, 18391196, 10.1073/pnas.0801677105, 1:CAS:528:DC%2BD1cXltVyis70%3DPubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Svendsen C. Stem cells and Parkinson’s disease: toward a treatment, not a cure. Cell Stem Cell, 2008, 2: 412–413, 18462691, 10.1016/j.stem.2008.04.010, 1:CAS:528:DC%2BD1cXmt1Wrs78%3DPubMedCrossRefGoogle Scholar
  20. 20.
    McKay R, Kittappa R. Will stem cell biology generate new therapies for Parkinson’s disease? Neuron, 2008, 58: 659–661, 18549778, 10.1016/j.neuron.2008.05.016, 1:CAS:528:DC%2BD1cXnvVSqsbs%3DPubMedCrossRefGoogle Scholar
  21. 21.
    Espejo E F, Montoro R J, Armengol J A, et al. Cellular and functional recovery of Parkinsonian rats after intrastriatal transplantation of carotid body cell aggregates. Neuron, 1998, 20: 197–206, 9491982, 10.1016/S0896-6273(00)80449-3, 1:CAS:528:DyaK1cXhtlGns7k%3DPubMedCrossRefGoogle Scholar
  22. 22.
    Toledo-Aral J J, Méndez-Ferrer S, Pardal R, et al. Dopaminergic cells of the carotid body: Physiological significance and possible therapeutic applications in Parkinson’s disease. Brain Res Bull, 2002, 57: 847–853, 12031283, 10.1016/S0361-9230(01)00771-7, 1:CAS:528:DC%2BD38XjvVGitrw%3DPubMedCrossRefGoogle Scholar
  23. 23.
    Kokovay E, Temple S. Taking neural crest stem cells to new heights. Cell, 2007, 131: 234–236, 17956725, 10.1016/j.cell.2007.10.006, 1:CAS:528:DC%2BD2sXht1KqsbnEPubMedCrossRefGoogle Scholar
  24. 24.
    Hong M, Mukhida K, Mendez I. GDNF therapy for Parkinson’s disease. Expert Rev Neurother, 2008, 8: 1125–1139, 18590482, 10.1586/14737175.8.7.1125, 1:CAS:528:DC%2BD1cXnvFShs7s%3DPubMedCrossRefGoogle Scholar
  25. 25.
    Gill S S, Patel N K, Hotton G R, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med, 2003, 9: 589–595, 12669033, 10.1038/nm850, 1:CAS:528:DC%2BD3sXjtlamtLw%3DPubMedCrossRefGoogle Scholar
  26. 26.
    Patel N K, Bunnage M, Plaha P, et al. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol (2005). 57: 298–302, 15668979, 10.1002/ana.20374, 1:CAS:528:DC%2BD2MXhs1Citr8%3DPubMedCrossRefGoogle Scholar
  27. 27.
    Slevin J T, Gerhardt G A, Smith C D, et al. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg, 2005, 102: 216–222, 15739547, 10.3171/jns.2005.102.2.0216, 1:CAS:528:DC%2BD2MXhslygs7s%3DPubMedCrossRefGoogle Scholar
  28. 28.
    Peck P. Amgen decision to halt GDNF clinical trials and withdraw the drug triggers protest from researchers and patients. Neurol Today, Am Acad Neurol, 2005, 5: 4, 7, 24CrossRefGoogle Scholar
  29. 29.
    Nutt J G, Burchiel K J, Comella C L, et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology, 2003, 60: 69–73, 12525720, 1:CAS:528:DC%2BD38Xps1aiur8%3DPubMedCrossRefGoogle Scholar
  30. 30.
    Morrison P F, Lonser R R, Oldfield E H. Convective delivery of glial cell line-derived neurotrophic factor in the human putamen. J Neurosurg, 2007, 107: 74–83, 17639877, 10.3171/JNS-07/07/0074PubMedCrossRefGoogle Scholar
  31. 31.
    Elsworth J D, Redmond D E Jr, Leranth C, et al. AAV2-mediated gene transfer of GDNF to the striatum of MPTP monkeys enhances the survival and outgrowth of co-implanted fetal dopamine neurons. Exp Neurol, 2008, 211: 252–258, 18346734, 10.1016/j.expneurol.2008.01.026, 1:CAS:528:DC%2BD1cXlsF2qtLk%3DPubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Emborg M E, Ebert A D, Moirano J, et al. GDNF-secreting human neural progenitor cells increase tyrosine hydroxylase and VMAT2 expression in MPTP-treated cynomolgus monkeys. Cell Transplant, 2008, 17: 383–395, 18522241PubMedGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Cell Therapy Center, Xuanwu HospitalCapital Medical University and Key Laboratory of Neurodegeneration, Ministry of EducationBeijingChina

Personalised recommendations