Science in China Series C: Life Sciences

, Volume 52, Issue 5, pp 428–438

Interspecies transmission and host restriction of avian H5N1 influenza virus

Special Topic Review

Abstract

Long-term endemicity of avian H5N1 influenza virus in poultry and continuous sporadic human infections in several countries has raised the concern of another potential pandemic influenza. Suspicion of the avian origin of the previous pandemics results in the close investigation of the mechanism of interspecies transmission. Entry and fusion is the first step for the H5N1 influenza virus to get into the host cells affecting the host ranges. Therefore receptor usage study has been a major focus for the last few years. We now know the difference of the sialic acid structures and distributions in different species, even in the different parts of the same host. Many host factors interacting with the influenza virus component proteins have been identified and their role in the host range expansion and interspecies transmission is under detailed scrutiny. Here we review current progress in the receptor usage and host factors.

Keywords

H5N1 influenza virus interspecies transmission virus adaptation host factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kawaoka Y, Krauss S, Webster R G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol, 1989, 63(11): 4603–4608, 2795713, 1:CAS:528:DyaK3cXntFWjtQ%3D%3DGoogle Scholar
  2. 2.
    Chang S, Zhang J, Liao X, et al. Influenza Virus Database (IVDB): an integrated information resource and analysis platform for influenza virus research. Nucleic Acids Res, 2007, 35(Database issue): D376–380, 17065465, 1:CAS:528:DC%2BD2sXivFGgtw%3D%3D, 10.1093/nar/gkl779Google Scholar
  3. 3.
    Bao Y, Bolotov P, Dernovoy D, et al. The influenza virus resource at the National Center for Biotechnology Information. J Virol, 2008, 82(2): 596–601, 17942553, 1:CAS:528:DC%2BD1cXmtFCnsw%3D%3D, 10.1128/JVI.02005-07Google Scholar
  4. 4.
    Obenauer J C, Denson J, Mehta P K, et al. Large-scale sequence analysis of avian influenza isolates. Science, 2006, 311(5767): 1576–1580, 16439620, 1:CAS:528:DC%2BD28XitlSnsbw%3D, 10.1126/science.1121586Google Scholar
  5. 5.
    Xu X, Subbarao, Cox N J, et al. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology, 1999, 261(1): 15–19, 10484749, 1:CAS:528:DyaK1MXlt12qt7g%3D, 10.1006/viro.1999.9820Google Scholar
  6. 6.
    Yee K S, Carpenter T E, Cardona C J. Epidemiology of H5N1 avian influenza. Comp Immunol Microbiol Infect Dis, 2009, 32(4): 325–340, 18448168, 10.1016/j.cimid.2008.01.005Google Scholar
  7. 7.
    Zhu Q Y, Qin E D, Wang W, et al. Fatal infection with influenza A (H5N1) virus in China. N Engl J Med, 2006, 354(25): 2731–2732, 16790715, 1:CAS:528:DC%2BD28XmtFSgt78%3D, 10.1056/NEJMc066058Google Scholar
  8. 8.
    Chen H, Deng G, Li Z, et al. The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci USA, 2004, 101(28): 10452–10457, 15235128, 1:CAS:528:DC%2BD2cXmtVyrsLo%3D, 10.1073/pnas.0403212101Google Scholar
  9. 9.
    Chen H, Li Y, Li Z, et al. Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. J Virol, 2006, 80(12): 5976–5983, 16731936, 1:CAS:528:DC%2BD28XlsFWmsb8%3D, 10.1128/JVI.00110-06Google Scholar
  10. 10.
    Chen H, Smith G J, Zhang S Y, et al. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature, 2005, 436(7048): 191–192, 16007072, 1:CAS:528:DC%2BD2MXmtVers7c%3D, 10.1038/nature03974Google Scholar
  11. 11.
    Liu J, Xiao H, Lei F, et al. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science, 2005, 309(5738): 1206, 16000410, 1:CAS:528:DC%2BD2MXovV2itrk%3D, 10.1126/science.1115273Google Scholar
  12. 12.
    Wang G, Zhan D, Li L, et al. H5N1 avian influenza re-emergence of Lake Qinghai: phylogenetic and antigenic analyses of the newly isolated viruses and roles of migratory birds in virus circulation. J Gen Virol, 2008, 89(Pt 3): 697–702, 18272760, 1:CAS:528:DC%2BD1cXjsVKnsbY%3D, 10.1099/vir.0.83419-0Google Scholar
  13. 13.
    Subbarao K, Klimov A, Katz J, et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science, 1998, 279(5349): 393–396, 9430591, 1:CAS:528:DyaK1cXmtl2rtg%3D%3D, 10.1126/science.279.5349.393Google Scholar
  14. 14.
    Yuen K Y, Chan P K, Peiris M, et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet, 1998, 351(9101): 467–471, 9482437, 1:STN:280:DyaK1c7ktFGnsw%3D%3D, 10.1016/S0140-6736(98)01182-9Google Scholar
  15. 15.
    Claas E C, Osterhaus A D, van Beek R, et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet, 1998, 351(9101): 472–477, 9482438, 1:CAS:528:DyaK1cXhsVGit7c%3D, 10.1016/S0140-6736(97)11212-0Google Scholar
  16. 16.
    de Jong J C, Claas E C, Osterhaus A D, et al. A pandemic warning? Nature, 1997, 389(6651): 554, 9335492, 10.1038/39218, 1:CAS:528:DyaK2sXmslWgtrw%3DGoogle Scholar
  17. 17.
    de Jong M D, Simmons C P, Thanh T T, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercyto-kinemia. Nat Med, 2006, 12(10): 1203–1207, 16964257, 10.1038/nm1477, 1:CAS:528:DC%2BD28XhtVChsrjMGoogle Scholar
  18. 18.
    Buxton Bridges C, Katz J M, Seto W H, et al. Risk of influenza A (H5N1) infection among health care workers exposed to patients with influenza A (H5N1), Hong Kong. J Infect Dis, 2000, 181(1): 344–348, 10608786, 1:STN:280:DC%2BD3c%2FoslSgsQ%3D%3D, 10.1086/315213Google Scholar
  19. 19.
    Ungchusak K, Auewarakul P, Dowell S F, et al. Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med, 2005, 352(4): 333–340, 15668219, 1:CAS:528:DC%2BD2MXnvVKgtA%3D%3D, 10.1056/NEJMoa044021Google Scholar
  20. 20.
    Kandun I N, Wibisono H, Sedyaningsih E R, et al. Three Indonesian clusters of H5N1 virus infection in 2005. N Engl J Med, 2006, 355(21): 2186–2194, 17124016, 1:CAS:528:DC%2BD28Xht1Chsb3N, 10.1056/NEJMoa060930Google Scholar
  21. 21.
    Normile D. Avian influenza. Human transmission but no pandemic in Indonesia. Science, 2006, 312(5782): 1855, 10.1126/science.312.5782.1864Google Scholar
  22. 22.
    Li H, Yu K, Yang H, et al. Isolation and characterization of H5N1 and H9N2 influenza viruses from pigs in China (in Chinese). Chinese Journal of Preventive Veterinary Medicine, 2004, 26(1): 1–6Google Scholar
  23. 23.
    Zhu Q, Yang H, Chen W, et al. A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens. J Virol, 2008, 82(1): 220–228, 17942562, 1:CAS:528:DC%2BD1cXhtVc%3D, 10.1128/JVI.00978-07Google Scholar
  24. 24.
    Kuiken T, Rimmelzwaan G, van Riel D, et al. Avian H5N1 influenza in cats. Science, 2004, 306(5694): 241, 15345779, 1:CAS:528:DC%2BD2cXosVSmsbo%3D, 10.1126/science.1102287Google Scholar
  25. 25.
    Desvaux S, Marx N, Ong S, et al. Highly pathogenic avian influenza virus (H5N1) outbreak in captive wild birds and cats, Cambodia. Emerg Infect Dis, 2009, 15(3): 475–478, 19239769, 10.3201/eid1503.071410Google Scholar
  26. 26.
    Keawcharoen J, Oraveerakul K, Kuiken T, et al. Avian influenza H5N1 in tigers and leopards. Emerg Infect Dis, 2004, 10(12): 2189–2191, 15663858Google Scholar
  27. 27.
    Thanawongnuwech R, Amonsin A, Tantilertcharoen R, et al. Probable tiger-to-tiger transmission of avian influenza H5N1. Emerg Infect Dis, 2005, 11(5): 699–701, 15890122Google Scholar
  28. 28.
    Songserm T, Amonsin A, Jam-on R, et al. Fatal avian influenza A H5N1 in a dog. Emerg Infect Dis, 2006, 12(11): 1744–1747, 17283627Google Scholar
  29. 29.
    Klopfleisch R, Wolf P U, Wolf C, et al. Encephalitis in a stone marten (Martes foina) after natural infection with highly pathogenic avian influenza virus subtype H5N1. J Comp Pathol, 2007, 137(2–3): 155–159, 17689552, 1:STN:280:DC%2BD2srisVaqsA%3D%3D, 10.1016/j.jcpa.2007.06.001Google Scholar
  30. 30.
    Song X, Xiao H, Huang Y, et al. Serological surveillance of influenza A virus infection in Swine populations in Fujian Province, China: No evidence of naturally occurring H5N1 infection in pigs. Zoonoses and Public Health, 2009: in pressGoogle Scholar
  31. 31.
    Hirst G K. The Agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science, 1941, 94(2427): 22–23, 17777315, 10.1126/science.94.2427.22Google Scholar
  32. 32.
    Gottschalk A. Neuraminidase: the specific enzyme of influenza virus and Vibrio cholerae. Biochim Biophys Acta, 1957, 23(3): 645–646, 13426178, 1:CAS:528:DyaG2sXkslCgsA%3D%3D, 10.1016/0006-3002(57)90389-XGoogle Scholar
  33. 33.
    Schauer R. Achievements and challenges of sialic acid research. Glycoconj J, 2000, 17(7–9): 485–499, 11421344, 1:CAS:528:DC%2BD3MXksVOgtL8%3D, 10.1023/A:1011062223612Google Scholar
  34. 34.
    Harduin-Lepers A, Mollicone R, Delannoy P, et al. The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology, 2005, 15(8): 805–817, 15843597, 1:CAS:528:DC%2BD2MXlslyrtr4%3D, 10.1093/glycob/cwi063Google Scholar
  35. 35.
    Suzuki Y. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull, 2005, 28(3): 399–408, 15744059, 1:CAS:528:DC%2BD2MXjsFehtb8%3D, 10.1248/bpb.28.399Google Scholar
  36. 36.
    Ito T, Suzuki Y, Mitnaul L, et al. Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology, 1997, 227(2): 493–499, 9018149, 1:CAS:528:DyaK2sXpt1Sktw%3D%3D, 10.1006/viro.1996.8323Google Scholar
  37. 37.
    Ito T, Suzuki Y, Takada A, et al. Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol, 1997, 71(4): 3357–3362, 9060710, 1:CAS:528:DyaK2sXhvVGhurs%3DGoogle Scholar
  38. 38.
    Suzuki Y, Ito T, Suzuki T, et al. Sialic acid species as a determinant of the host range of influenza A viruses. J Virol, 2000, 74(24): 11825–11831, 11090182, 1:CAS:528:DC%2BD3MXitVGisLs%3D, 10.1128/JVI.74.24.11825-11831.2000Google Scholar
  39. 39.
    Parrish C R, Kawaoka Y. The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses. Annu Rev Microbiol, 2005, 59: 553–586, 16153179, 1:CAS:528:DC%2BD2MXht1ShsL7J, 10.1146/annurev.micro.59.030804.121059Google Scholar
  40. 40.
    Shinya K, Ebina M, Yamada S, et al. Avian flu: influenza virus receptors in the human airway. Nature, 2006, 440(7083): 435–436, 16554799, 1:CAS:528:DC%2BD28Xis1Omu7s%3D, 10.1038/440435aGoogle Scholar
  41. 41.
    van Riel D, Munster V J, de Wit E, et al. H5N1 virus attachment to lower respiratory tract. Science, 2006, 312(5772): 399, 16556800, 10.1126/science.1125548Google Scholar
  42. 42.
    Rogers G N, Paulson J C, Daniels R S, et al. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature, 1983, 304(5921): 76–78, 6191220, 1:CAS:528:DyaL3sXkvVKnsLs%3D, 10.1038/304076a0Google Scholar
  43. 43.
    Naeve C W, Hinshaw V S, Webster R G. Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus. J Virol, 1984, 51(2): 567–569, 6748165, 1:CAS:528:DyaL2cXlt1equ70%3DGoogle Scholar
  44. 44.
    Connor R J, Kawaoka Y, Webster R G, et al. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology, 1994, 205(1): 17–23, 7975212, 1:CAS:528:DyaK2cXmvFKktbk%3D, 10.1006/viro.1994.1615Google Scholar
  45. 45.
    Stevens J, Blixt O, Tumpey T M, et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science, 2006, 312(5772): 404–410, 16543414, 1:CAS:528:DC%2BD28XjslSktbY%3D, 10.1126/science.1124513Google Scholar
  46. 46.
    Yamada S, Suzuki Y, Suzuki T, et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature, 2006, 444(7117): 378–382, 17108965, 1:CAS:528:DC%2BD28Xht1Sgtb7J, 10.1038/nature05264Google Scholar
  47. 47.
    Ha Y, Stevens D J, Skehel J J, et al. X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci USA, 2001, 98(20): 11181–11186, 11562490, 1:CAS:528:DC%2BD3MXnt1yqtro%3D, 10.1073/pnas.201401198Google Scholar
  48. 48.
    Ito T, Couceiro J N, Kelm S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol, 1998, 72(9): 7367–7373, 9696833, 1:CAS:528:DyaK1cXlsVSmsrs%3DGoogle Scholar
  49. 49.
    Van Reeth K. Avian and swine influenza viruses: our current understanding of the zoonotic risk. Vet Res, 2007, 38(2): 243–260, 17257572, 10.1051/vetres:2006062, 1:CAS:528:DC%2BD2sXktFCjsL4%3DGoogle Scholar
  50. 50.
    Shi W F, Gibbs M J, Zhang Y Z, et al. Genetic analysis of four porcine avian influenza viruses isolated from Shandong, China. Arch Virol, 2008, 153(1): 211–217, 18000640, 1:CAS:528:DC%2BD1cXotlWqtQ%3D%3D, 10.1007/s00705-007-1083-1Google Scholar
  51. 51.
    Choi Y K, Nguyen T D, Ozaki H, et al. Studies of H5N1 influenza virus infection of pigs by using viruses isolated in Vietnam and Thailand in 2004. J Virol, 2005, 79(16): 10821–10825, 16051873, 1:CAS:528:DC%2BD2MXntFCqsLc%3D, 10.1128/JVI.79.16.10821-10825.2005Google Scholar
  52. 52.
    Jung K, Song D S, Kang B K, et al. Serologic surveillance of swine H1 and H3 and avian H5 and H9 influenza A virus infections in swine population in Korea. Prev Vet Med, 2007, 79(2–4): 294–303, 17223213, 10.1016/j.prevetmed.2006.12.005Google Scholar
  53. 53.
    Lipatov A S, Kwon Y K, Sarmento L V, et al. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses. PLoS Pathog, 2008, 4(7): e1000102Google Scholar
  54. 54.
    Horimoto T, Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol, 2005, 3(8): 591–600, 16064053, 1:CAS:528:DC%2BD2MXmvVGhur4%3D, 10.1038/nrmicro1208Google Scholar
  55. 55.
    Duan L, Bahl J, Smith G J, et al. The development and genetic diversity of H5N1 influenza virus in China, 1996–2006. Virology, 2008, 380(2): 243–254, 18774155, 1:CAS:528:DC%2BD1cXht1egtbfO, 10.1016/j.virol.2008.07.038Google Scholar
  56. 56.
    Guan Y, Peiris J S, Lipatov A S, et al. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci USA, 2002, 99(13): 8950–8955, 12077307, 1:CAS:528:DC%2BD38XltF2htbo%3D, 10.1073/pnas.132268999Google Scholar
  57. 57.
    Li K S, Guan Y, Wang J, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature, 2004, 430(6996): 209–213, 15241415, 1:CAS:528:DC%2BD2cXlsVGjtrY%3D, 10.1038/nature02746Google Scholar
  58. 58.
    Chen H, Smith G J, Li K S, et al. Establishment of multiple subline-ages of H5N1 influenza virus in Asia: implications for pandemic control. Proc Natl Acad Sci USA, 2006, 103(8): 2845–2850, 16473931, 1:CAS:528:DC%2BD28XksF2rtb4%3D, 10.1073/pnas.0511120103Google Scholar
  59. 59.
    Campitelli L, Ciccozzi M, Salemi M, et al. H5N1 influenza virus evolution: a comparison of different epidemics in birds and humans (1997–2004). J Gen Virol, 2006, 87(Pt 4): 955–960, 16528045, 1:CAS:528:DC%2BD28XjsVWhu74%3D, 10.1099/vir.0.81397-0Google Scholar
  60. 60.
    Kaverin N V, Rudneva I A, Ilyushina N A, et al. Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol, 2002, 83(Pt 10): 2497–2505, 12237433, 1:CAS:528:DC%2BD38XnsFKgu7c%3DGoogle Scholar
  61. 61.
    Lee C W, Senne D A, Suarez D L. Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. J Virol, 2004, 78(15): 8372–8381, 15254209, 1:CAS:528:DC%2BD2cXmtFCjtr4%3D, 10.1128/JVI.78.15.8372-8381.2004Google Scholar
  62. 62.
    Suzuki Y. Natural selection on the influenza virus genome. Mol Biol Evol, 2006, 23(10): 1902–1911, 16818477, 1:CAS:528:DC%2BD28XhtVWgs7rM, 10.1093/molbev/msl050Google Scholar
  63. 63.
    Almond J W. A single gene determines the host range of influenza virus. Nature, 1977, 270(5638): 617–618, 593388, 1:STN:280:DyaE1c%2FntFOqsA%3D%3D, 10.1038/270617a0Google Scholar
  64. 64.
    Subbarao E K, London W, Murphy B R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol, 1993, 67(4): 1761–1764, 8445709, 1:CAS:528:DyaK3sXitVKltbk%3DGoogle Scholar
  65. 65.
    Hatta M, Gao P, Halfmann P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 2001, 293(5536): 1840–1842, 11546875, 1:CAS:528:DC%2BD3MXmvVSktrw%3D, 10.1126/science.1062882Google Scholar
  66. 66.
    Palese P, Tobita K, Ueda M, et al. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology, 1974, 61(2): 397–410, 4472498, 1:CAS:528:DyaE2cXls1KitLo%3D, 10.1016/0042-6822(74)90276-1Google Scholar
  67. 67.
    Luo G, Chung J, Palese P. Alterations of the stalk of the influenza virus neuraminidase: deletions and insertions. Virus Res, 1993, 29(2): 141–153, 8212856, 1:CAS:528:DyaK3sXlvFymtrc%3D, 10.1016/0168-1702(93)90055-RGoogle Scholar
  68. 68.
    Castrucci M R, Kawaoka Y. Biologic importance of neuraminidase stalk length in influenza A virus. J Virol, 1993, 67(2): 759–764, 8419645, 1:CAS:528:DyaK3sXpslKrtw%3D%3DGoogle Scholar
  69. 69.
    Mitnaul L J, Matrosovich M N, Castrucci M R, et al. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol, 2000, 74(13): 6015–6020, 10846083, 1:CAS:528:DC%2BD3cXkt1eiuro%3D, 10.1128/JVI.74.13.6015-6020.2000Google Scholar
  70. 70.
    Wagner R, Matrosovich M, Klenk H D. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol, 2002, 12(3): 159–166, 11987141, 10.1002/rmv.352, 1:CAS:528:DC%2BD38XksVyms74%3DGoogle Scholar
  71. 71.
    Garcia-Sastre A. Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology, 2001, 279(2): 375–384, 11162793, 1:CAS:528:DC%2BD3MXnvFOgsw%3D%3D, 10.1006/viro.2000.0756Google Scholar
  72. 72.
    Katze M G, He Y, Gale M Jr. Viruses and interferon: a fight for supremacy. Nat Rev Immunol, 2002, 2(9): 675–687, 12209136, 1:CAS:528:DC%2BD38Xmslant7w%3D, 10.1038/nri888Google Scholar
  73. 73.
    Lee D C, Cheung C Y, Law A H, et al. p38 mitogen-activated protein kinase-dependent hyperinduction of tumor necrosis factor alpha expression in response to avian influenza virus H5N1. J Virol, 2005, 79(16): 10147–10154, 16051807, 1:CAS:528:DC%2BD2MXntFCrtLo%3D, 10.1128/JVI.79.16.10147-10154.2005Google Scholar
  74. 74.
    To K F, Chan P K, Chan K F, et al. Pathology of fatal human infection associated with avian influenza A H5N1 virus. J Med Virol, 2001, 63(3): 242–246, 11170064, 1:STN:280:DC%2BD3M7otVGqug%3D%3D, 10.1002/1096-9071(200103)63:3<242::AID-JMV1007>3.0.CO;2-NGoogle Scholar
  75. 75.
    Huarte M, Sanz-Ezquerro J J, Roncal F, et al. PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators. J Virol, 2001, 75(18): 8597–8604, 11507205, 1:CAS:528:DC%2BD3MXmsVaqsro%3D, 10.1128/JVI.75.18.8597-8604.2001Google Scholar
  76. 76.
    Deng T, Engelhardt O G, Thomas B, et al. Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol, 2006, 80(24): 11911–11919, 17005651, 1:CAS:528:DC%2BD28XhtlWksLnJ, 10.1128/JVI.01565-06Google Scholar
  77. 77.
    Honda A, Okamoto T, Ishihama A. Host factor Ebp1: selective inhibitor of influenza virus transcriptase. Genes Cells, 2007, 12(2): 133–142, 17295834, 1:CAS:528:DC%2BD2sXitVKrsbc%3D, 10.1111/j.1365-2443.2007.01047.xGoogle Scholar
  78. 78.
    O’Neill R E, Palese P. NPI-1, the human homolog of SRP-1, interacts with influenza virus nucleoprotein. Virology, 1995, 206(1): 116–125, 7831767, 10.1016/S0042-6822(95)80026-3Google Scholar
  79. 79.
    Wang P, Palese P, O’Neill R E. The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal. J Virol, 1997, 71(3): 1850–1856, 9032315, 1:CAS:528:DyaK2sXht1Wmtbw%3DGoogle Scholar
  80. 80.
    Momose F, Basler C F, O’Neill R E, et al. Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol, 2001, 75(4): 1899–1908, 11160689, 1:CAS:528:DC%2BD3MXhtVSns7Y%3D, 10.1128/JVI.75.4.1899-1908.2001Google Scholar
  81. 81.
    Neumann G, Hughes M T, Kawaoka Y. Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J, 2000, 19(24): 6751–6758, 11118210, 1:CAS:528:DC%2BD3MXns1antA%3D%3D, 10.1093/emboj/19.24.6751Google Scholar
  82. 82.
    Hirayama E, Atagi H, Hiraki A, et al. Heat shock protein 70 is related to thermal inhibition of nuclear export of the influenza virus ribonucleoprotein complex. J Virol, 2004, 78(3): 1263–1270, 14722281, 1:CAS:528:DC%2BD2cXmsFSrug%3D%3D, 10.1128/JVI.78.3.1263-1270.2004Google Scholar
  83. 83.
    Mayer D, Molawi K, Martinez-Sobrido L, et al. Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J Proteome Res, 2007, 6(2): 672–682, 17269724, 1:CAS:528:DC%2BD28XhtlCit73L, 10.1021/pr060432uGoogle Scholar
  84. 84.
    Jorba N, Juarez S, Torreira E, et al. Analysis of the interaction of influenza virus polymerase complex with human cell factors. Proteomics, 2008, 8(10): 2077–2088, 18491320, 1:CAS:528:DC%2BD1cXmvFWktb0%3D, 10.1002/pmic.200700508Google Scholar
  85. 85.
    Watanabe K, Handa H, Mizumoto K, et al. Mechanism for inhibition of influenza virus RNA polymerase activity by matrix protein. J Virol, 1996, 70(1): 241–247, 8523532, 1:CAS:528:DyaK2MXpvFSmsro%3DGoogle Scholar
  86. 86.
    O’Neill R E, Talon J, Palese P. The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J, 1998, 17(1): 288–296, 9427762, 10.1093/emboj/17.1.288Google Scholar
  87. 87.
    Watanabe K, Takizawa N, Katoh M, et al. Inhibition of nuclear export of ribonucleoprotein complexes of influenza virus by leptomycin B. Virus Res. 2001, 77(1): 31–42, 11451485, 1:CAS:528:DC%2BD3MXltVejtbk%3D, 10.1016/S0168-1702(01)00263-5Google Scholar
  88. 88.
    Zhirnov O P, Klenk H D. Histones as a target for influenza virus matrix protein M1. Virology, 1997, 235(2): 302–310, 9281510, 1:CAS:528:DyaK2sXmt1ahu70%3D, 10.1006/viro.1997.8700Google Scholar
  89. 89.
    Pleschka S, Wolff T, Ehrhardt C, et al. Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol, 2001, 3(3): 301–305, 11231581, 1:CAS:528:DC%2BD3MXitFemsLw%3D, 10.1038/35060098Google Scholar
  90. 90.
    Reinhardt J, Wolff T. The influenza A virus M1 protein interacts with the cellular receptor of activated C kinase (RACK) 1 and can be phosphorylated by protein kinase C. Vet Microbiol, 2000, 74(1–2): 87–100, 10799781, 1:CAS:528:DC%2BD3cXivVGjsbs%3D, 10.1016/S0378-1135(00)00169-3Google Scholar
  91. 91.
    Watanabe K, Fuse T, Asanoa I, et al. Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. FEBS Letters, 2006, 580(24): 5785–5790, 17022977, 1:CAS:528:DC%2BD28XhtVGisb3P, 10.1016/j.febslet.2006.09.040Google Scholar
  92. 92.
    Zhirnov O P, Ksenofontov A L, Kuzmina S G, et al. Interaction of influenza A virus M1 matrix protein with caspases. Biochemistry-Moscow, 2002, 67(5): 534–539, 12059772, 1:CAS:528:DC%2BD38XkvVWrtr0%3D, 10.1023/A:1015542110798Google Scholar
  93. 93.
    Liu X, Sun P L, Yu M, et al. Cyclophilin A interacts with influenza A virus M1 protein and impairs the early stage of the viral replication. Cell Microbiol. 2009, doi: 10.1111/j.1462-5822.2009.01286.xGoogle Scholar
  94. 94.
    Nemeroff M E, Barabino S M, Li Y, et al. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′-end formation of cellular pre-mRNAs. Mol Cell, 1998, 1(7): 991–1000, 9651582, 1:CAS:528:DyaK1cXktlKktr4%3D, 10.1016/S1097-2765(00)80099-4Google Scholar
  95. 95.
    Wolff T, O’Neill R E, Palese P. NS1-Binding protein (NS1-BP): a novel human protein that interacts with the influenza A virus nonstructural NS1 protein is relocalized in the nuclei of infected cells. J Virol, 1998, 72(9): 7170–7180, 9696811, 1:CAS:528:DyaK1cXlsVSnt7k%3DGoogle Scholar
  96. 96.
    Chen Z, Li Y, Krug R M. Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery. EMBO J, 1999, 18(8): 2273–2283, 10205180, 1:CAS:528:DyaK1MXivVOmsrc%3D, 10.1093/emboj/18.8.2273Google Scholar
  97. 97.
    Falcon A M, Fortes P, Marion R M, et al. Interaction of influenza virus NS1 protein and the human homologue of Staufen in vivo and in vitro. Nucleic acids research, 1999, 27(11): 2241–2247, 10325410, 1:CAS:528:DyaK1MXjvVGltr4%3D, 10.1093/nar/27.11.2241Google Scholar
  98. 98.
    Burgui I, Aragon T, Ortin J, et al. PABP1 and eIF4GI associate with influenza virus NS1 protein in viral mRNA translation initiation complexes. J Gen Virol, 2003, 84(Pt 12): 3263–3274, 14645908, 1:CAS:528:DC%2BD3sXpvFartLg%3D, 10.1099/vir.0.19487-0Google Scholar
  99. 99.
    Samuel C E. Antiviral actions of interferons. Clin Microbiol Rev, 2001, 14(4): 778–809, table of contents, 11585785, 1:CAS:528:DC%2BD3MXot1Wms7o%3D, 10.1128/CMR.14.4.778-809.2001Google Scholar
  100. 100.
    Wang X Y, Hinson E R, Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe, 2007, 2(2): 96–105, 18005724, 1:CAS:528:DC%2BD2sXpsFelt7s%3D, 10.1016/j.chom.2007.06.009Google Scholar
  101. 101.
    Chin K C, Cresswell P. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc Natl Acad Sci USA, 2001, 98(26): 15125–15130, 11752458, 1:CAS:528:DC%2BD38XpsVWn, 10.1073/pnas.011593298Google Scholar
  102. 102.
    Turan K, Mibayashi M, Sugiyama K, et al. Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome. Nucleic Acids Res, 2004, 32(2): 643–652, 14752052, 1:CAS:528:DC%2BD2cXhtVKku7g%3D, 10.1093/nar/gkh192Google Scholar
  103. 103.
    Hale B G, Randall R E, Ortin J, et al. The multifunctional NS1 protein of influenza A viruses. J Gen Virol, 2008, 89(Pt 10): 2359–2376, 18796704, 1:CAS:528:DC%2BD1cXht1ektbfP, 10.1099/vir.0.2008/004606-0Google Scholar
  104. 104.
    Goodman A G, Smith J A, Balachandran S, et al. The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism. J Virol, 2007, 81(5): 2221–2230, 17166899, 1:CAS:528:DC%2BD2sXitVOgsr4%3D, 10.1128/JVI.02151-06Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.CAS Key Laboratory of Pathogenic Microbiology and Immunology (CASPMI), Institute of MicrobiologyChinese Academy of Sciences (CAS)BeijingChina
  2. 2.Beijing Institutes of Life Science (BioLS)Chinese Academy of Sciences (CAS)BeijingChina

Personalised recommendations